149 research outputs found

    Black hole thermodynamical entropy

    Full text link
    As early as 1902, Gibbs pointed out that systems whose partition function diverges, e.g. gravitation, lie outside the validity of the Boltzmann-Gibbs (BG) theory. Consistently, since the pioneering Bekenstein-Hawking results, physically meaningful evidence (e.g., the holographic principle) has accumulated that the BG entropy SBGS_{BG} of a (3+1)(3+1) black hole is proportional to its area L2L^2 (LL being a characteristic linear length), and not to its volume L3L^3. Similarly it exists the \emph{area law}, so named because, for a wide class of strongly quantum-entangled dd-dimensional systems, SBGS_{BG} is proportional to ln⁥L\ln L if d=1d=1, and to Ld−1L^{d-1} if d>1d>1, instead of being proportional to LdL^d (d≄1d \ge 1). These results violate the extensivity of the thermodynamical entropy of a dd-dimensional system. This thermodynamical inconsistency disappears if we realize that the thermodynamical entropy of such nonstandard systems is \emph{not} to be identified with the BG {\it additive} entropy but with appropriately generalized {\it nonadditive} entropies. Indeed, the celebrated usefulness of the BG entropy is founded on hypothesis such as relatively weak probabilistic correlations (and their connections to ergodicity, which by no means can be assumed as a general rule of nature). Here we introduce a generalized entropy which, for the Schwarzschild black hole and the area law, can solve the thermodynamic puzzle.Comment: 7 pages, 2 figures. Accepted for publication in EPJ
    • 

    corecore