85 research outputs found
NN Core Interactions and Differential Cross Sections from One Gluon Exchange
We derive nonstrange baryon-baryon scattering amplitudes in the
nonrelativistic quark model using the ``quark Born diagram" formalism. This
approach describes the scattering as a single interaction, here the
one-gluon-exchange (OGE) spin-spin term followed by constituent interchange,
with external nonrelativistic baryon wavefunctions attached to the scattering
diagrams to incorporate higher-twist wavefunction effects. The short-range
repulsive core in the NN interaction has previously been attributed to this
spin-spin interaction in the literature; we find that these perturbative
constituent-interchange diagrams do indeed predict repulsive interactions in
all I,S channels of the nucleon-nucleon system, and we compare our results for
the equivalent short-range potentials to the core potentials found by other
authors using nonperturbative methods. We also apply our perturbative
techniques to the N and systems: Some
channels are found to have attractive core potentials and may accommodate
``molecular" bound states near threshold. Finally we use our Born formalism to
calculate the NN differential cross section, which we compare with experimental
results for unpolarised proton-proton elastic scattering. We find that several
familiar features of the experimental differential cross section are reproduced
by our Born-order result.Comment: 27 pages, figures available from the authors, revtex, CEBAF-TH-93-04,
MIT-CTP-2187, ORNL-CCIP-93-0
- …