13,368 research outputs found

    Transport properties of a two impurity system: a theoretical approach

    Get PDF
    A system of two interacting cobalt atoms, at varying distances, was studied in a recent scanning tunneling microscope experiment by Bork et. al.[Nature Phys. 7, 901 (2011)]. We propose a microscopic model that explains, for all experimentally analyzed interatomic distances, the physics observed in these experiments. Our proposal is based on the two-impurity Anderson model, with the inclusion of a two-path geometry for charge transport. This many-body system is treated in the finite-U slave boson mean-field approximation and the logarithmic-discretization embedded-cluster approximation. We physically characterize the different charge transport regimes of this system at various interatomic distances and show that, as in the experiments, the features observed in the transport properties depend on the presence of two impurities but also on the existence of two conducting channels for electron transport. We interpret the splitting observed in the conductance as the result of the hybridization of the two Kondo resonances associated with each impurity.Comment: 5 pages, 5 figure

    Extended excitons and compact heliumlike biexcitons in type-II quantum dots.

    Get PDF
    We have used magneto-photoluminescence measurements to establish that InP/GaAs quantum dots have a type-II band (staggered) alignment. The average excitonic Bohr radius and the binding energy are estimated to be 15 nm and 1.5 meV respectively. When compared to bulk InP, the excitonic binding is weaker due to the repulsive (type-II) potential at the hetero-interface. The measurements are extended to over almost six orders of magnitude of laser excitation powers and to magnetic fields of up to 50 tesla. It is shown that the excitation power can be used to tune the average hole occupancy of the quantum dots, and hence the strength of the electron-hole binding. The diamagnetic shift coe±cient is observed to drastically reduce as the quantum dot ensemble makes a gradual transition from a regime where the emission is from (hydrogen-like) two-particle excitonic states to a regime where the emission from (helium-like) four-particle biexcitonic states also become significant

    Distance to the scaling law: a useful approach for unveiling relationships between crime and urban metrics

    Get PDF
    We report on a quantitative analysis of relationships between the number of homicides, population size and other ten urban metrics. By using data from Brazilian cities, we show that well defined average scaling laws with the population size emerge when investigating the relations between population and number of homicides as well as population and urban metrics. We also show that the fluctuations around the scaling laws are log-normally distributed, which enabled us to model these scaling laws by a stochastic-like equation driven by a multiplicative and log-normally distributed noise. Because of the scaling laws, we argue that it is better to employ logarithms in order to describe the number of homicides in function of the urban metrics via regression analysis. In addition to the regression analysis, we propose an approach to correlate crime and urban metrics via the evaluation of the distance between the actual value of the number of homicides (as well as the value of the urban metrics) and the value that is expected by the scaling law with the population size. This approach have proved to be robust and useful for unveiling relationships/behaviors that were not properly carried out by the regression analysis, such as i) the non-explanatory potential of the elderly population when the number of homicides is much above or much below the scaling law, ii) the fact that unemployment has explanatory potential only when the number of homicides is considerably larger than the expected by the power law, and iii) a gender difference in number of homicides, where cities with female population below the scaling law are characterized by a number of homicides above the power law.Comment: Accepted for publication in PLoS ON

    Scale-adjusted metrics for predicting the evolution of urban indicators and quantifying the performance of cities

    Full text link
    More than a half of world population is now living in cities and this number is expected to be two-thirds by 2050. Fostered by the relevancy of a scientific characterization of cities and for the availability of an unprecedented amount of data, academics have recently immersed in this topic and one of the most striking and universal finding was the discovery of robust allometric scaling laws between several urban indicators and the population size. Despite that, most governmental reports and several academic works still ignore these nonlinearities by often analyzing the raw or the per capita value of urban indicators, a practice that actually makes the urban metrics biased towards small or large cities depending on whether we have super or sublinear allometries. By following the ideas of Bettencourt et al., we account for this bias by evaluating the difference between the actual value of an urban indicator and the value expected by the allometry with the population size. We show that this scale-adjusted metric provides a more appropriate/informative summary of the evolution of urban indicators and reveals patterns that do not appear in the evolution of per capita values of indicators obtained from Brazilian cities. We also show that these scale-adjusted metrics are strongly correlated with their past values by a linear correspondence and that they also display crosscorrelations among themselves. Simple linear models account for 31%-97% of the observed variance in data and correctly reproduce the average of the scale-adjusted metric when grouping the cities in above and below the allometric laws. We further employ these models to forecast future values of urban indicators and, by visualizing the predicted changes, we verify the emergence of spatial clusters characterized by regions of the Brazilian territory where we expect an increase or a decrease in the values of urban indicators.Comment: Accepted for publication in PLoS ON
    corecore