23,975 research outputs found

    Radial Density Statistics of the Galaxy Distribution and the Luminosity Function

    Full text link
    This paper discusses a connection between the relativistic number counts of cosmological sources and the observed galaxy luminosity function (LF). Observational differential number densities are defined and obtained from published LF data using such connection. We observe a distortion in the observational quantities that increases with higher redshift values as compared to the theoretical predictions. The use of different cosmological distance measures plays a role in such a distortionComment: 3 pages, 3 figures. Abridged version of arXiv:1201.557

    Five-Dimensional QED, Muon Pair Production and Correction to the Coulomb Potential

    Full text link
    We consider QED in five dimensions in a configuration where matter is localized on a 3-brane while foton propagates in the bulk. The idea is to investigate the effects of the Kaluza-Klein modes of the photon in the relativistic regime, but in low energy, and in the nonrelativistic regime. In the relativistic regime, we calculate the cross section for the reaction e++eμ++μe^+ + e^- \to \mu^+ + \mu^-. We compare our theoretical result with a precise measurement of this cross section at s=57.77\sqrt{s}=57.77 GeV. As result, we extract a lower bound on the size of the extra dimension. In the nonrelativistic regime, we derive the contribution for the Coulomb potential due to the whole tower of the Kaluza-Klein excited modes of the photon. We use the modified potential to calculate the Rutherford scattering differential cross section.Comment: minor changes, three new refs. added, to appear in IJMP

    Generalized Chaplygin gas with α=0\alpha = 0 and the ΛCDM\Lambda CDM cosmological model

    Full text link
    The generalized Chaplygin gas model is characterized by the equation of state p=Aραp = - \frac{A}{\rho^\alpha}. It is generally stated that the case α=0\alpha = 0 is equivalent to a model with cosmological constant and dust (ΛCDM\Lambda CDM). In this work we show that, if this is true for the background equations, this is not true for the perturbation equations. Hence, the mass spectrum predicted for both models may differ.Comment: Latex file, 4 pages, 2 figures in eps forma

    Temperature effect on (2+1) experimental Kardar-Parisi-Zhang growth

    Full text link
    We report on the effect of substrate temperature (T) on both local structure and long-wavelength fluctuations of polycrystalline CdTe thin films deposited on Si(001). A strong T-dependent mound evolution is observed and explained in terms of the energy barrier to inter-grain diffusion at grain boundaries, as corroborated by Monte Carlo simulations. This leads to transitions from uncorrelated growth to a crossover from random-to-correlated growth and transient anomalous scaling as T increases. Due to these finite-time effects, we were not able to determine the universality class of the system through the critical exponents. Nevertheless, we demonstrate that this can be circumvented by analyzing height, roughness and maximal height distributions, which allow us to prove that CdTe grows asymptotically according to the Kardar-Parisi-Zhang (KPZ) equation in a broad range of T. More important, one finds positive (negative) velocity excess in the growth at low (high) T, indicating that it is possible to control the KPZ non-linearity by adjusting the temperature.Comment: 6 pages, 5 figure
    corecore