15,197 research outputs found
Scale Invariance in a Perturbed Einstein-de Sitter Cosmology
This paper seeks to check the validity of the "apparent fractal conjecture"
(Ribeiro 2001ab: gr-qc/9909093, astro-ph/0104181), which states that the
observed power-law behaviour for the average density of large-scale
distribution of galaxies arises when some observational quantities, selected by
their relevance in average density profile determination, are calculated along
the past light cone. Implementing these conditions in the proposed set of
observational relations profoundly changes the behaviour of many observables in
the standard cosmological models. In particular, the average density becomes
observationally inhomogeneous, even in the spatially homogeneous spacetime of
standard cosmology, change which was already analysed by Ribeiro (1992b, 1993,
1994, 1995: astro-ph/9910145) for a non-perturbed model. Here we derive
observational relations in a perturbed Einstein-de Sitter cosmology by means of
the perturbation scheme proposed by Abdalla and Mohayaee (1999:
astro-ph/9810146), where the scale factor is expanded in power series to yield
perturbative terms. The differential equations derived in this perturbative
context, and other observables necessary in our analysis, are solved
numerically. The results show that our perturbed Einstein-de Sitter cosmology
can be approximately described by a decaying power-law like average density
profile, meaning that the dust distribution of this cosmology has a scaling
behaviour compatible with the power-law profile of the density-distance
correlation observed in the galaxy catalogues. These results show that, in the
context of this work, the apparent fractal conjecture is correct.Comment: 18 pages, 1 figure, LaTeX. Final version (small changes in the figure
plus some references update). Fortran code included with the LaTeX source. To
be published in "Fractals
Nonlinear gyrofluid computation of edge localised ideal ballooning modes
Three dimensional electromagnetic gyrofluid simulations of the ideal
ballooning mode blowout scenario for tokamak edge localized modes (ELMs) are
presented. Special emphasis is placed on energetic diagnosis, examining changes
in the growth rate in the linear, overshoot, and decay phases. The saturation
process is energy transfer to self generated edge turbulence which exhibits an
ion temperature gradient (ITG) mode structure. Convergence in the decay phase
is found only if the spectrum reaches the ion gyroradius. The equilibrium is a
self consistent background whose evolution is taken into account. Approximately
two thirds of the total energy in the edge layer is liberated in the blowout.
Parameter dependence with respect to plasma pressure and the ion gyroradius is
studied. Despite the violent nature of the short-lived process, the transition
to nonlinearity is very similar to that found in generic tokamak edge
turbulence.Comment: The following article has been submitted to Physics of Plasmas. After
it is published, it will be found at http://pop.aip.org
Sustainable management of miombo woodlands in the Northern part of Mozambique (Niassa National Reserve - NNR).
Poster presented at Commiting Science to Global Development. Lisbon (Portugal). 29-30 Sep 2009
Influence of temperature fluctuations on plasma turbulence investigations with Langmuir probes
The reliability of Langmuir probe measurements for plasma-turbulence
investigations is studied on GEMR gyro-fluid simulations and compared with
results from conditionally sampled I-V characteristics as well as self-emitting
probe measurements in the near scrape-off layer of the tokamak ASDEX Upgrade.
In this region, simulation and experiment consistently show coherent in-phase
fluctuations in density, plasma potential and also in electron temperature.
Ion-saturation current measurements turn out to reproduce density fluctuations
quite well. Fluctuations in the floating potential, however, are strongly
influenced by temperature fluctuations and, hence, are strongly distorted
compared to the actual plasma potential. These results suggest that
interpreting floating as plasma-potential fluctuations while disregarding
temperature effects is not justified near the separatrix of hot fusion plasmas.
Here, floating potential measurements lead to corrupted results on the ExB
dynamics of turbulent structures in the context of, e.g., turbulent particle
and momentum transport or instability identification on the basis of
density-potential phase relations
Temperature effect on (2+1) experimental Kardar-Parisi-Zhang growth
We report on the effect of substrate temperature (T) on both local structure
and long-wavelength fluctuations of polycrystalline CdTe thin films deposited
on Si(001). A strong T-dependent mound evolution is observed and explained in
terms of the energy barrier to inter-grain diffusion at grain boundaries, as
corroborated by Monte Carlo simulations. This leads to transitions from
uncorrelated growth to a crossover from random-to-correlated growth and
transient anomalous scaling as T increases. Due to these finite-time effects,
we were not able to determine the universality class of the system through the
critical exponents. Nevertheless, we demonstrate that this can be circumvented
by analyzing height, roughness and maximal height distributions, which allow us
to prove that CdTe grows asymptotically according to the Kardar-Parisi-Zhang
(KPZ) equation in a broad range of T. More important, one finds positive
(negative) velocity excess in the growth at low (high) T, indicating that it is
possible to control the KPZ non-linearity by adjusting the temperature.Comment: 6 pages, 5 figure
- …