9 research outputs found

    Rapid effects of extrafine beclomethasone dipropionate/formoterol fixed combination inhaler on airway inflammation and bronchoconstriction in asthma: a randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The dose-dependent anti-inflammatory effects of a recent fixed combination of extrafine beclomethasone dipropionate/formoterol (BDP/F) were investigated using non-invasive markers of inflammation, exhaled nitric oxide (NO) and adenosine monophosphate (AMP) provocative challenge. The aim was to assess the onset of the anti-inflammatory action of low and high doses and evaluate the suitability of non-invasive assessments to demonstrate dose response.</p> <p>Methods</p> <p>Steroid naïve adult out-patients with mild asthma, sensitive to AMP with baseline exhaled NO > 25 parts per billion entered a double-blind, placebo-controlled, 3-way, cross-over study. Patients were randomised to low dose (1 actuation) or high dose (4 actuations) extrafine BDP/F 100/6 μg, or placebo administered twice daily on Days 1 and 2 and once in the morning on Day 3 of each period. Exhaled NO was measured pre-dose on Day 1, then 2 and 4 hours post-administration on Day 3. The AMP challenge was performed 4 hours post-administration on Day 3 and forced expiratory volume in 1 second (FEV<sub>1</sub>, L) was measured from 0 to 4 hours post-dose on Day 1. Endpoints were NO at 2 and 4 hours, AMP challenge at 4 hours after the fifth dose on Day 3 and FEV<sub>1 </sub>area under the curve from 0 to 4 h post-dose on Day 1. Analysis of covariance was performed for NO and FEV<sub>1 </sub>and analysis of variance for AMP challenge.</p> <p>Results</p> <p>Eighteen patients were randomised and completed the study. Exhaled NO was significantly lower for both doses of extrafine BDP/F versus placebo at 2 and 4 hours (high dose LS mean difference: -22.5 ppb, p < 0.0001 and -20.5 ppb, p < 0.0001; low dose: -14.1 ppb, p = 0.0006 and -12.1 ppb, p = 0.0043) with a significant dose response (p = 0.0342 and p = 0.0423). Likewise, AMP challenge revealed statistically significant differences between both doses of extrafine BDP/F and placebo (high dose LS mean difference: 4.8 mg/mL, p < 0.0001; low dose: 3.7 mg/mL, p < 0.0001), and a significant dose response (p = 0.0185). FEV<sub>1 </sub>was significantly improved versus placebo for both doses (high dose LS mean difference: 0.2 L, p = 0.0001; low dose: 0.2 L p = 0.0001), but without a significant dose response.</p> <p>Conclusions</p> <p>The fixed combination inhaler of extrafine BDP/F has early dose-dependent anti-inflammatory effects with a rapid onset of bronchodilatation in mild asthmatic patients.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01343745">NCT01343745</a></p

    Fluticasone/formoterol combination therapy is as effective as fluticasone/salmeterol in the treatment of asthma, but has a more rapid onset of action: an open-label, randomized study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inhaled corticosteroid (ICS) fluticasone propionate (fluticasone) and the long-acting β<sub>2</sub>-agonist (LABA) formoterol fumarate (formoterol) are being made available as a combination product (fluticasone/formoterol, <b><it>flutiform</it></b><sup>®</sup>) in a single aerosol inhaler. This 12-week, open-label, randomized, active-controlled, parallel-group, multicentre, phase 3 study compared the efficacy and safety of fluticasone/formoterol with the commercially available combination product fluticasone/salmeterol.</p> <p>Methods</p> <p>Patients aged ≥ 18 years (N = 202) with mild-to-moderate–severe, persistent asthma for ≥ 6 months prior to screening were included in the study. After a screening phase (4–10 days), eligible patients were randomized 1:1 to receive fluticasone/formoterol or fluticasone/salmeterol during the 12-week treatment period. The primary objective was to demonstrate non-inferiority of fluticasone/formoterol versus fluticasone/salmeterol, measured by pre-dose forced expiratory volume in the first second (FEV<sub>1</sub>), at week 12.</p> <p>Results</p> <p>Fluticasone/formoterol was comparable to fluticasone/salmeterol for the primary efficacy endpoint, mean pre-dose FEV<sub>1 </sub>at week 12. The new combination was also comparable to fluticasone/salmeterol for change from baseline to week 12 in pre-dose FEV<sub>1</sub>, change from pre-dose FEV<sub>1 </sub>at baseline to 2-hour post-dose FEV<sub>1 </sub>at week 12 and discontinuations due to lack of efficacy. Importantly, fluticasone/formoterol was superior to fluticasone/salmeterol in time to onset of action throughout the duration of the study. The two treatments demonstrated similar results for various other secondary efficacy parameters, including other lung function tests, patient-reported outcomes, rescue medication use, asthma exacerbations and Asthma Quality of Life Questionnaire scores. Fluticasone/formoterol was well tolerated and had a good safety profile that was similar to fluticasone/salmeterol.</p> <p>Conclusions</p> <p>The results of this study indicate that fluticasone/formoterol is as effective as fluticasone/salmeterol, and has a more rapid onset of action, reflecting the faster bronchodilatory effects of formoterol compared with those of salmeterol. If patients perceive the benefits of therapy with fluticasone/formoterol more rapidly than with fluticasone/salmeterol, this could have a positive impact on preference and adherence.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00476073">NCT00476073</a></p

    Sensory nerves and airway irritability

    No full text

    Adenosine Receptors and Asthma

    No full text
    corecore