89 research outputs found
The Golgin GMAP210/TRIP11 Anchors IFT20 to the Golgi Complex
Eukaryotic cells often use proteins localized to the ciliary membrane to monitor the extracellular environment. The mechanism by which proteins are sorted, specifically to this subdomain of the plasma membrane, is almost completely unknown. Previously, we showed that the IFT20 subunit of the intraflagellar transport particle is localized to the Golgi complex, in addition to the cilium and centrosome, and hypothesized that the Golgi pool of IFT20 plays a role in sorting proteins to the ciliary membrane. Here, we show that IFT20 is anchored to the Golgi complex by the golgin protein GMAP210/Trip11. Mice lacking GMAP210 die at birth with a pleiotropic phenotype that includes growth restriction, ventricular septal defects of the heart, omphalocele, and lung hypoplasia. Cells lacking GMAP210 have normal Golgi structure, but IFT20 is no longer localized to this organelle. GMAP210 is not absolutely required for ciliary assembly, but cilia on GMAP210 mutant cells are shorter than normal and have reduced amounts of the membrane protein polycystin-2 localized to them. This work suggests that GMAP210 and IFT20 function together at the Golgi in the sorting or transport of proteins destined for the ciliary membrane
Riluzole Increases the Amount of Latent HSF1 for an Amplified Heat Shock Response and Cytoprotection
Planetary Rings
Planetary rings are the only nearby astrophysical disks, and the only disks
that have been investigated by spacecraft. Although there are significant
differences between rings and other disks, chiefly the large planet/ring mass
ratio that greatly enhances the flatness of rings (aspect ratios as small as
1e-7), understanding of disks in general can be enhanced by understanding the
dynamical processes observed at close-range and in real-time in planetary
rings. We review the known ring systems of the four giant planets, as well as
the prospects for ring systems yet to be discovered. We then review planetary
rings by type. The main rings of Saturn comprise our system's only dense broad
disk and host many phenomena of general application to disks including spiral
waves, gap formation, self-gravity wakes, viscous overstability and normal
modes, impact clouds, and orbital evolution of embedded moons. Dense narrow
rings are the primary natural laboratory for understanding shepherding and
self-stability. Narrow dusty rings, likely generated by embedded source bodies,
are surprisingly found to sport azimuthally-confined arcs. Finally, every known
ring system includes a substantial component of diffuse dusty rings. Planetary
rings have shown themselves to be useful as detectors of planetary processes
around them, including the planetary magnetic field and interplanetary
impactors as well as the gravity of nearby perturbing moons. Experimental rings
science has made great progress in recent decades, especially numerical
simulations of self-gravity wakes and other processes but also laboratory
investigations of coefficient of restitution and spectroscopic ground truth.
The age of self-sustained ring systems is a matter of debate; formation
scenarios are most plausible in the context of the early solar system, while
signs of youthfulness indicate at least that rings have never been static
phenomena.Comment: 82 pages, 34 figures. Final revision of general review to be
published in "Planets, Stars and Stellar Systems", P. Kalas and L. French
(eds.), Springer (http://refworks.springer.com/sss
- …