1 research outputs found

    A categorical foundation for Bayesian probability

    Full text link
    Given two measurable spaces HH and DD with countably generated σ\sigma-algebras, a perfect prior probability measure PHP_H on HH and a sampling distribution S:H→DS: H \rightarrow D, there is a corresponding inference map I:D→HI: D \rightarrow H which is unique up to a set of measure zero. Thus, given a data measurement μ:1→D\mu: 1 \rightarrow D, a posterior probability PH^=I∘μ\widehat{P_H}= I \circ \mu can be computed. This procedure is iterative: with each updated probability PHP_H, we obtain a new joint distribution which in turn yields a new inference map II and the process repeats with each additional measurement. The main result uses an existence theorem for regular conditional probabilities by Faden, which holds in more generality than the setting of Polish spaces. This less stringent setting then allows for non-trivial decision rules (Eilenberg--Moore algebras) on finite (as well as non finite) spaces, and also provides for a common framework for decision theory and Bayesian probability.Comment: 15 pages; revised setting to more clearly explain how to incorporate perfect measures and the Giry monad; to appear in Applied Categorical Structure
    corecore