72 research outputs found

    Improved ability of biological and previous caries multimarkers to predict caries disease as revealed by multivariate PLS modelling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dental caries is a chronic disease with plaque bacteria, diet and saliva modifying disease activity. Here we have used the PLS method to evaluate a multiplicity of such biological variables (n = 88) for ability to predict caries in a cross-sectional (baseline caries) and prospective (2-year caries development) setting.</p> <p>Methods</p> <p>Multivariate PLS modelling was used to associate the many biological variables with caries recorded in thirty 14-year-old children by measuring the numbers of incipient and manifest caries lesions at all surfaces.</p> <p>Results</p> <p>A wide but shallow gliding scale of one fifth caries promoting or protecting, and four fifths non-influential, variables occurred. The influential markers behaved in the order of plaque bacteria > diet > saliva, with previously known plaque bacteria/diet markers and a set of new protective diet markers. A differential variable patterning appeared for new versus progressing lesions. The influential biological multimarkers (n = 18) predicted baseline caries better (ROC area 0.96) than five markers (0.92) and a single lactobacilli marker (0.7) with sensitivity/specificity of 1.87, 1.78 and 1.13 at 1/3 of the subjects diagnosed sick, respectively. Moreover, biological multimarkers (n = 18) explained 2-year caries increment slightly better than reported before but predicted it poorly (ROC area 0.76). By contrast, multimarkers based on previous caries predicted alone (ROC area 0.88), or together with biological multimarkers (0.94), increment well with a sensitivity/specificity of 1.74 at 1/3 of the subjects diagnosed sick.</p> <p>Conclusion</p> <p>Multimarkers behave better than single-to-five markers but future multimarker strategies will require systematic searches for improved saliva and plaque bacteria markers.</p

    Treatment of psychotic symptoms in bipolar disorder with aripiprazole monotherapy: A meta-analysis

    Get PDF
    Background: We present a systematic review and meta-analysis of the available clinical trials concerning the usefulness of aripiprazole in the treatment of the psychotic symptoms in bipolar disorder.Methods: A systematic MEDLINE and repository search concerning clinical trials for aripiprazole in bipolar disorder was conducted.Results: The meta-analysis of four randomised controlled trials (RCTs) on acute mania suggests that the effect size of aripiprazole versus placebo was equal to 0.14 but a more reliable and accurate estimation is 0.18 for the total Positive and Negative Syndrome Scale (PANSS) score. The effect was higher for the PANSS-positive subscale (0.28), PANSS-hostility subscale (0.24) and PANSS-cognitive subscale (0.20), and lower for the PANSS-negative subscale (0.12). No data on the depressive phase of bipolar illness exist, while there are some data in favour of aripiprazole concerning the maintenance phase, where at week 26 all except the total PANSS score showed a significant superiority of aripiprazole over placebo (d = 0.28 for positive, d = 0.38 for the cognitive and d = 0.71 for the hostility subscales) and at week 100 the results were similar (d = 0.42, 0.63 and 0.48, respectively).Conclusion: The data analysed for the current study support the usefulness of aripiprazole against psychotic symptoms during the acute manic and maintenance phases of bipolar illness. © 2009 Fountoulakis et al; licensee BioMed Central Ltd

    Lithium Suppresses Astrogliogenesis by Neural Stem and Progenitor Cells by Inhibiting STAT3 Pathway Independently of Glycogen Synthase Kinase 3 Beta

    Get PDF
    Transplanted neural stem and progenitor cells (NSCs) produce mostly astrocytes in injured spinal cords. Lithium stimulates neurogenesis by inhibiting GSK3b (glycogen synthetase kinase 3-beta) and increasing WNT/beta catenin. Lithium suppresses astrogliogenesis but the mechanisms were unclear. We cultured NSCs from subventricular zone of neonatal rats and showed that lithium reduced NSC production of astrocytes as well as proliferation of glia restricted progenitor (GRP) cells. Lithium strongly inhibited STAT3 (signal transducer and activator of transcription 3) activation, a messenger system known to promote astrogliogenesis and cancer. Lithium abolished STAT3 activation and astrogliogenesis induced by a STAT3 agonist AICAR (5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside), suggesting that lithium suppresses astrogliogenesis by inhibiting STAT3. GSK3β inhibition either by a specific GSK3β inhibitor SB216763 or overexpression of GID5-6 (GSK3β Interaction Domain aa380 to 404) did not suppress astrogliogenesis and GRP proliferation. GSK3β inhibition also did not suppress STAT3 activation. Together, these results indicate that lithium inhibits astrogliogenesis through non-GSK3β-mediated inhibition of STAT. Lithium may increase efficacy of NSC transplants by increasing neurogenesis and reducing astrogliogenesis. Our results also may explain the strong safety record of lithium treatment of manic depression. Millions of people take high-dose (>1 gram/day) lithium carbonate for a lifetime. GSK3b inhibition increases WNT/beta catenin, associated with colon and other cancers. STAT3 inhibition may reduce risk for cancer
    corecore