12 research outputs found

    Scale-up of a pan-coating process

    No full text
    The purpose of this work was to develop a practical scale-up model for a solvent-based pan-coating process. Practical scale-up rules to determine the key parameters (pan load, pan speed, spray rate, air flow) required to control the process are proposed. The proposed scale-up rules are based on a macroscopic evaluation of the coating process. Implementation of these rules does not require complex experimentation or prediction of model parameters. The proposed scale-up rules were tested by conducting coating scale-up and scale-down experiments on 24-inch and 52-inch Vector Hi-coaters. The data demonstrate that using these rules led to similar cumulative drug release profiles (f2≫50; and P Analysis of Variance [PANOVA]≫0.05 for cumulative percentage of drug released after 12 hours [Cum 12] from tablets made at 24- and 52-inch scales. Membrane characteristics such as opacity and roughness were also similar across the 2 scales. The effects of the key process variables on coat weight uniformity and membrane characteristics were also studied. Pan speed was found to be the most significant factor related to coating uniformity. Spray droplet size was found to affect the membrane roughness significantly, whereas opacity was affected by the drying capacity

    Direct exoplanet investigation using interstellar space probes

    No full text
    Experience in exploring our own solar system has shown that direct investigation of planetary bodies using space probes invariably yields scientific knowledge not otherwise obtainable. In the case of exoplanets, such direct investigation may be required to confirm inferences made by astronomical observations, especially with regard to planetary interiors, surface processes, geological evolution, and possible biology. This will necessitate transporting sophisticated scientific instruments across interstellar space, and some proposed methods for achieving this with flight times measured in decades are reviewed. It is concluded that, with the possible exception of very lightweight (and thus scientifically limited) probes accelerated to velocities of ∼0.1c with powerful Earth-based lasers, achieving such a capability may have to wait until the development of a space-based civilization capable of leveraging the material and energy resources of the solar system
    corecore