6 research outputs found
Optimal neural population coding of an auditory spatial cue.
A sound, depending on the position of its source, can take more time to reach one ear than the other. This interaural (between the ears) time difference (ITD) provides a major cue for determining the source location. Many auditory neurons are sensitive to ITDs, but the means by which such neurons represent ITD is a contentious issue. Recent studies question whether the classical general model (the Jeffress model) applies across species. Here we show that ITD coding strategies of different species can be explained by a unifying principle: that the ITDs an animal naturally encounters should be coded with maximal accuracy. Using statistical techniques and a stochastic neural model, we demonstrate that the optimal coding strategy for ITD depends critically on head size and sound frequency. For small head sizes and/or low-frequency sounds, the optimal coding strategy tends towards two distinct sub-populations tuned to ITDs outside the range created by the head. This is consistent with recent observations in small mammals. For large head sizes and/or high frequencies, the optimal strategy is a homogeneous distribution of ITD tunings within the range created by the head. This is consistent with observations in the barn owl. For humans, the optimal strategy to code ITDs from an acoustically measured distribution depends on frequency; above 400 Hz a homogeneous distribution is optimal, and below 400 Hz distinct sub-populations are optimal
Contributions of Intrinsic Neural and Stimulus Variance to Binaural Sensitivity
The discrimination of a change in a stimulus is determined both by the magnitude of that change and by the variability in the neural response to the stimulus. When the stimulus is itself noisy, then the relative contributions of the neural (intrinsic) and stimulus induced variability becomes a critical question. We measured the contribution of intrinsic neural noise and interstimulus variability to the discrimination of interaural time differences (ITDs) and interaural correlation (IAC). We measured discharge rate versus characteristic frequency (CF) tone ITD functions, and CF-centered narrowband noise ITD and IAC functions in interleaved blocks in the same units in the inferior colliculus of urethane-anesthetized guinea pigs. Ten “frozen” tokens of noise were synthesized and the responses to each token were separately analyzed to allow the relative contributions of intrinsic and stimulus variability to be assessed. ITD and IAC discrimination thresholds were determined for a simulated two-interval forced-choice experiment, based on the firing rate distributions, using receiver operating characteristic analysis. On average, between stimulus variability contributed 19% (range, 1.5–30%) of the variance in noise ITD discrimination and 27% (range, 3–50%) in IAC discrimination. Noise ITD thresholds were slightly higher than tone ITD thresholds. Taking the mean of the thresholds for individual noise tokens gave a similar result to pooling across all noise tokens. This implies that although the stimulus induced variability is measurable, it is insignificant in relation to the intrinsic noise in ITD and IAC discrimination