37 research outputs found

    Dopamine Beta Hydroxylase Genotype Identifies Individuals Less Susceptible to Bias in Computer-Assisted Decision Making

    Get PDF
    Computerized aiding systems can assist human decision makers in complex tasks but can impair performance when they provide incorrect advice that humans erroneously follow, a phenomenon known as “automation bias.” The extent to which people exhibit automation bias varies significantly and may reflect inter-individual variation in the capacity of working memory and the efficiency of executive function, both of which are highly heritable and under dopaminergic and noradrenergic control in prefrontal cortex. The dopamine beta hydroxylase (DBH) gene is thought to regulate the differential availability of dopamine and norepinephrine in prefrontal cortex. We therefore examined decision-making performance under imperfect computer aiding in 100 participants performing a simulated command and control task. Based on two single nucleotide polymorphism (SNPs) of the DBH gene, −1041 C/T (rs1611115) and 444 G/A (rs1108580), participants were divided into groups of low and high DBH enzyme activity, where low enzyme activity is associated with greater dopamine relative to norepinephrine levels in cortex. Compared to those in the high DBH enzyme activity group, individuals in the low DBH enzyme activity group were more accurate and speedier in their decisions when incorrect advice was given and verified automation recommendations more frequently. These results indicate that a gene that regulates relative prefrontal cortex dopamine availability, DBH, can identify those individuals who are less susceptible to bias in using computerized decision-aiding systems

    Schizophrenia: do all roads lead to dopamine or is this where they start? Evidence from two epidemiologically informed developmental rodent models

    Get PDF
    The idea that there is some sort of abnormality in dopamine (DA) signalling is one of the more enduring hypotheses in schizophrenia research. Opinion leaders have published recent perspectives on the aetiology of this disorder with provocative titles such as ‘Risk factors for schizophrenia—all roads lead to dopamine' or ‘The dopamine hypothesis of schizophrenia—the final common pathway'. Perhaps, the other most enduring idea about schizophrenia is that it is a neurodevelopmental disorder. Those of us that model schizophrenia developmental risk-factor epidemiology in animals in an attempt to understand how this may translate to abnormal brain function have consistently shown that as adults these animals display behavioural, cognitive and pharmacological abnormalities consistent with aberrant DA signalling. The burning question remains how can in utero exposure to specific (environmental) insults induce persistent abnormalities in DA signalling in the adult? In this review, we summarize convergent evidence from two well-described developmental animal models, namely maternal immune activation and developmental vitamin D deficiency that begin to address this question. The adult offspring resulting from these two models consistently reveal locomotor abnormalities in response to DA-releasing or -blocking drugs. Additionally, as adults these animals have DA-related attentional and/or sensorimotor gating deficits. These findings are consistent with many other developmental animal models. However, the authors of this perspective have recently refocused their attention on very early aspects of DA ontogeny and describe reductions in genes that induce or specify dopaminergic phenotype in the embryonic brain and early changes in DA turnover suggesting that the origins of these behavioural abnormalities in adults may be traced to early alterations in DA ontogeny. Whether the convergent findings from these two models can be extended to other developmental animal models for this disease is at present unknown as such early brain alterations are rarely examined. Although it is premature to conclude that such mechanisms could be operating in other developmental animal models for schizophrenia, our convergent data have led us to propose that rather than all roads leading to DA, perhaps, this may be where they start

    A putative functional role for oligodendrocytes in mood regulation

    Get PDF
    Altered glial structure and function is implicated in several major mental illnesses and increasing evidence specifically links changes in oligodendrocytes with disrupted mood regulation. Low density and reduced expression of oligodendrocyte-specific gene transcripts in postmortem human subjects points toward decreased oligodendrocyte function in most of the major mental illnesses. Similar features are observed in rodent models of stress-induced depressive-like phenotypes, such as the unpredictable chronic mild stress and chronic corticosterone exposure, suggesting an effect downstream from stress. However, whether oligodendrocyte changes are a causal component of psychiatric phenotypes is not known. Traditional views that identify oligodendrocytes solely as nonfunctional support cells are being challenged, and recent studies suggest a more dynamic role for oligodendrocytes in neuronal functioning than previously considered, with the region adjacent to the node of Ranvier (i.e., paranode) considered a critical region of glial–neuronal interaction. Here, we briefly review the current knowledge regarding oligodendrocyte disruptions in psychiatric disorders and related animal models, with a focus on major depression. We then highlight several rodent studies, which suggest that alterations in oligodendrocyte structure and function can produce behavioral changes that are informative of mood regulatory mechanisms. Together, these studies suggest a model, whereby impaired oligodendrocyte and possibly paranode structure and function can impact neural circuitry, leading to downstream effects related to emotionality in rodents, and potentially to mood regulation in human psychiatric disorders

    Growth and reproduction in the Antarctic brooding bivalve Adacnarca nitens (Philobryidae) from the Ross Sea

    No full text
    We present information on the reproductive biology, population structure, and growth of the brooding Antarctic bivalve Adacnarca nitens Pelseneer 1903, from the Ross Sea, Antarctica. Individuals ranging from 0.85 - 6.00 mm were found attached to a hydrozoan colony. This species shows low fecundity and large egg size, common to other brooding species. The minimum size at which oogenesis was detected was 2.3 mm and the minimum size at which brooding was evident was 3.9 mm. Embryos of a full range of developmental stages were brooded simultaneously in females. The population showed a log-normal distribution and results suggest non-periodic reproduction with continuous embryonic development. The reproductive traits of A. nitens are discussed in the context of circum-Antarctic species distribution and limitations to dispersal in brooding benthic invertebrates

    Developmental vitamin D deficiency alters dopamine-mediated behaviors and dopamine transporter function in adult female rats

    No full text
    Developmental vitamin D (DVD) deficiency has been proposed as a risk factor for schizophrenia. DVD deficiency in neonatal rats is associated with alterations in cellular development, dopamine metabolism, and brain morphology. DVD-deficient adult rats show novelty-induced hyperlocomotion and an enhanced locomotor response to MK-801, which can be ameliorated by pretreatment with the antipsychotic drug haloperidol. In this study, we examined locomotor responses of male and female juvenile and adult rats to a dose range of amphetamine. We also measured dopamine receptor and monoamine transporter densities in adult brain. Female DVD-deficient adult rats displayed an enhanced sensitivity to amphetamine-induced locomotion, an increased dopamine transporter density in the caudate-putamen and increased affinity in the nucleus accumbens compared with control females. By contrast, there were no differences between control and DVD-deficient male rats. Taken together, this suggests an alteration in the development of the dopamine system and on dopamine-mediated behaviors in female DVD-deficient rats, and this may be relevant to the underlying neurobiology of schizophrenia
    corecore