83 research outputs found

    Modeling of negative Poisson’s ratio (auxetic) crystalline cellulose Iβ

    Get PDF
    Energy minimizations for unstretched and stretched cellulose models using an all-atom empirical force field (Molecular Mechanics) have been performed to investigate the mechanism for auxetic (negative Poisson’s ratio) response in crystalline cellulose Iβ from kraft cooked Norway spruce. An initial investigation to identify an appropriate force field led to a study of the structure and elastic constants from models employing the CVFF force field. Negative values of on-axis Poisson’s ratios nu31 and nu13 in the x1-x3 plane containing the chain direction (x3) were realized in energy minimizations employing a stress perpendicular to the hydrogen-bonded cellobiose sheets to simulate swelling in this direction due to the kraft cooking process. Energy minimizations of structural evolution due to stretching along the x3 chain direction of the ‘swollen’ (kraft cooked) model identified chain rotation about the chain axis combined with inextensible secondary bonds as the most likely mechanism for auxetic response

    A 13C NMR study of decomposing logging residues in an Australian hoop pine plantation

    Get PDF
    Purpose Residue retention is important for nutrient and water economy in subtropical plantation forests. We examined decomposing hoop pine (Araucaria cunninghamii Ait. Ex D. Don) residues-foliage, branches, and stem wood-to determine the changes in structural chemistry that occur during decomposition. Materials and methods Residues were incubated in situ using 0.05 m2 microplots. We used solid-state 13C nuclear magnetic resonance (NMR) spectroscopy to determine the structural composition of harvest residues in the first 24 months of decomposition. Results and discussion The spectral data for branch and stem residues were generally similar to one another and showed few changes during decomposition. The lignin content of branch and foliage residues decreased during decomposition. When residues were mixed together during decomposition, the O-alkyl fraction of foliage decreased initially then increased up to 24 months, while the alkyl carbon (C) fraction exhibited the opposite pattern. The decomposition of woody hoop pine residues (branch and stem wood) is surprisingly uniform across the major C forms elucidated with 13C NMR, with little evidence of preferential decomposition. When mixed with branch and stem materials, foliage residues showed significant short- and long-term compositional changes. This synergistic effect may be due to the C/N ratio of the treatments and the structure of the microbial decomposer community. Conclusions Twenty-four months of decomposition of hoop pine residues did not result in substantial accumulation of recalcitrant C forms, suggesting that they may not contribute to long-term C sequestration.No Full Tex
    corecore