1,263 research outputs found
Quasi-Normal Modes of Stars and Black Holes
Perturbations of stars and black holes have been one of the main topics of
relativistic astrophysics for the last few decades. They are of particular
importance today, because of their relevance to gravitational wave astronomy.
In this review we present the theory of quasi-normal modes of compact objects
from both the mathematical and astrophysical points of view. The discussion
includes perturbations of black holes (Schwarzschild, Reissner-Nordstr\"om,
Kerr and Kerr-Newman) and relativistic stars (non-rotating and
slowly-rotating). The properties of the various families of quasi-normal modes
are described, and numerical techniques for calculating quasi-normal modes
reviewed. The successes, as well as the limits, of perturbation theory are
presented, and its role in the emerging era of numerical relativity and
supercomputers is discussed.Comment: 74 pages, 7 figures, Review article for "Living Reviews in
Relativity
"After my husband's circumcision, I know that I am safe from diseases": Women's Attitudes and Risk Perceptions Towards Male Circumcision in Iringa, Tanzania.
While male circumcision reduces the risk of female-to-male HIV transmission and certain sexually transmitted infections (STIs), there is little evidence that circumcision provides women with direct protection against HIV. This study used qualitative methods to assess women's perceptions of male circumcision in Iringa, Tanzania. Women in this study had strong preferences for circumcised men because of the low risk perception of HIV with circumcised men, social norms favoring circumcised men, and perceived increased sexual desirability of circumcised men. The health benefits of male circumcision were generally overstated; many respondents falsely believed that women are also directly protected against HIV and that the risk of all STIs is greatly reduced or eliminated in circumcised men. Efforts to engage women about the risks and limitations of male circumcision, in addition to the benefits, should be expanded so that women can accurately assess their risk of HIV or STIs during sexual intercourse with circumcised men
Extinction times in the subcritical stochastic SIS logistic epidemic
Many real epidemics of an infectious disease are not straightforwardly super-
or sub-critical, and the understanding of epidemic models that exhibit such
complexity has been identified as a priority for theoretical work. We provide
insights into the near-critical regime by considering the stochastic SIS
logistic epidemic, a well-known birth-and-death chain used to model the spread
of an epidemic within a population of a given size . We study the behaviour
of the process as the population size tends to infinity. Our results cover
the entire subcritical regime, including the "barely subcritical" regime, where
the recovery rate exceeds the infection rate by an amount that tends to 0 as but more slowly than . We derive precise asymptotics for
the distribution of the extinction time and the total number of cases
throughout the subcritical regime, give a detailed description of the course of
the epidemic, and compare to numerical results for a range of parameter values.
We hypothesise that features of the course of the epidemic will be seen in a
wide class of other epidemic models, and we use real data to provide some
tentative and preliminary support for this theory.Comment: Revised; 34 pages; 6 figure
NBC update: The addition of viral and fungal databases to the Naïve Bayes classification tool
<p>Abstract</p> <p>Background</p> <p>Classifying the fungal and viral content of a sample is an important component of analyzing microbial communities in environmental media. Therefore, a method to classify any fragment from these organisms' DNA should be implemented.</p> <p>Results</p> <p>We update the näive Bayes classification (NBC) tool to classify reads originating from viral and fungal organisms. NBC classifies a fungal dataset similarly to Basic Local Alignment Search Tool (BLAST) and the Ribosomal Database Project (RDP) classifier. We also show NBC's similarities and differences to RDP on a fungal large subunit (LSU) ribosomal DNA dataset. For viruses in the training database, strain classification accuracy is 98%, while for those reads originating from sequences not in the database, the order-level accuracy is 78%, where order indicates the taxonomic level in the tree of life.</p> <p>Conclusions</p> <p>In addition to being competitive to other classifiers available, NBC has the potential to handle reads originating from any location in the genome. We recommend using the Bacteria/Archaea, Fungal, and Virus databases separately due to algorithmic biases towards long genomes. The tool is publicly available at: <url>http://nbc.ece.drexel.edu</url>.</p
Time separation as a hidden variable to the Copenhagen school of quantum mechanics
The Bohr radius is a space-like separation between the proton and electron in
the hydrogen atom. According to the Copenhagen school of quantum mechanics, the
proton is sitting in the absolute Lorentz frame. If this hydrogen atom is
observed from a different Lorentz frame, there is a time-like separation
linearly mixed with the Bohr radius. Indeed, the time-separation is one of the
essential variables in high-energy hadronic physics where the hadron is a bound
state of the quarks, while thoroughly hidden in the present form of quantum
mechanics. It will be concluded that this variable is hidden in Feynman's rest
of the universe. It is noted first that Feynman's Lorentz-invariant
differential equation for the bound-state quarks has a set of solutions which
describe all essential features of hadronic physics. These solutions explicitly
depend on the time separation between the quarks. This set also forms the
mathematical basis for two-mode squeezed states in quantum optics, where both
photons are observable, but one of them can be treated a variable hidden in the
rest of the universe. The physics of this two-mode state can then be translated
into the time-separation variable in the quark model. As in the case of the
un-observed photon, the hidden time-separation variable manifests itself as an
increase in entropy and uncertainty.Comment: LaTex 10 pages with 5 figure. Invited paper presented at the
Conference on Advances in Quantum Theory (Vaxjo, Sweden, June 2010), to be
published in one of the AIP Conference Proceedings serie
Genome analysis and comparative genomics of a Giardia intestinalis assemblage E isolate
<p>Abstract</p> <p>Background</p> <p><it>Giardia intestinalis </it>is a protozoan parasite that causes diarrhea in a wide range of mammalian species. To further understand the genetic diversity between the <it>Giardia intestinalis </it>species, we have performed genome sequencing and analysis of a wild-type <it>Giardia intestinalis </it>sample from the assemblage E group, isolated from a pig.</p> <p>Results</p> <p>We identified 5012 protein coding genes, the majority of which are conserved compared to the previously sequenced genomes of the WB and GS strains in terms of microsynteny and sequence identity. Despite this, there is an unexpectedly large number of chromosomal rearrangements and several smaller structural changes that are present in all chromosomes. Novel members of the VSP, NEK Kinase and HCMP gene families were identified, which may reveal possible mechanisms for host specificity and new avenues for antigenic variation. We used comparative genomics of the three diverse <it>Giardia intestinalis </it>isolates P15, GS and WB to define a core proteome for this species complex and to identify lineage-specific genes. Extensive analyses of polymorphisms in the core proteome of <it>Giardia </it>revealed differential rates of divergence among cellular processes.</p> <p>Conclusions</p> <p>Our results indicate that despite a well conserved core of genes there is significant genome variation between <it>Giardia </it>isolates, both in terms of gene content, gene polymorphisms, structural chromosomal variations and surface molecule repertoires. This study improves the annotation of the <it>Giardia </it>genomes and enables the identification of functionally important variation.</p
Normalisation of cerebrospinal fluid biomarkers parallels improvement of neurological symptoms following HAART in HIV dementia – case report
BACKGROUND: Since the introduction of HAART the incidence of HIV dementia has declined and HAART seems to improve neurocognitive function in patients with HIV dementia. Currently, HIV dementia develops mainly in patients without effective treatment, though it has also been described in patients on HAART and milder HIV-associated neuropsychological impairment is still frequent among HIV-1 infected patients regardless of HAART. Elevated cerebrospinal fluid (CSF) levels of markers of neural injury and immune activation have been found in HIV dementia, but neither of those, nor CSF HIV-1 RNA levels have been proven useful as diagnostic or prognostic pseudomarkers in HIV dementia. CASE PRESENTATION: We report a case of HIV dementia (MSK stage 3) in a 57 year old antiretroviral naïve man who was introduced on zidovudine, lamivudine and ritonavir boosted indinavir, and followed with consecutive lumbar punctures before and after two and 15 months after initiation of HAART. Improvement of neurocognitive function was paralleled by normalisation of CSF neural markers (NFL, Tau and GFAP) levels and a decline in CSF and serum neopterin and CSF and plasma HIV-1 RNA levels. CONCLUSION: The value of these CSF markers as prognostic pseudomarkers of the effect of HAART on neurocognitive impairment in HIV dementia ought to be evaluated in longitudinal studies
Decision Process in Human-Agent Interaction: Extending Jason Reasoning Cycle
The main characteristic of an agent is acting on behalf of humans. Then, agents are employed as modeling paradigms for complex systems and their implementation. Today we are witnessing a growing increase in systems complexity, mainly when the presence of human beings and their interactions with the system introduces a dynamic variable not easily manageable during design phases. Design and implementation of this type of systems highlight the problem of making the system able to decide in autonomy. In this work we propose an implementation, based on Jason, of a cognitive architecture whose modules allow structuring the decision-making process by the internal states of the agents, thus combining aspects of self-modeling and theory of the min
Reduction in Predator Defense in the Presence of Neighbors in a Colonial Fish
Predation pressure has long been considered a leading explanation of colonies, where close neighbors may reduce predation via dilution, alarming or group predator attacks. Attacking predators may be costly in terms of energy and survival, leading to the question of how neighbors contribute to predator deterrence in relationship to each other. Two hypotheses explaining the relative efforts made by neighbors are byproduct-mutualism, which occurs when breeders inadvertently attack predators by defending their nests, and reciprocity, which occurs when breeders deliberately exchange predator defense efforts with neighbors. Most studies investigating group nest defense have been performed with birds. However, colonial fish may constitute a more practical model system for an experimental approach because of the greater ability of researchers to manipulate their environment. We investigated in the colonial fish, Neolamprologus caudopunctatus, whether prospecting pairs preferred to breed near conspecifics or solitarily, and how breeders invested in anti-predator defense in relation to neighbors. In a simple choice test, prospecting pairs selected breeding sites close to neighbors versus a solitary site. Predators were then sequentially presented to the newly established test pairs, the previously established stimulus pairs or in between the two pairs. Test pairs attacked the predator eight times more frequently when they were presented on their non-neighbor side compared to between the two breeding sites, where stimulus pairs maintained high attack rates. Thus, by joining an established pair, test pairs were able to reduce their anti-predator efforts near neighbors, at no apparent cost to the stimulus pairs. These findings are unlikely to be explained by reciprocity or byproduct-mutualism. Our results instead suggest a commensal relationship in which new pairs exploit the high anti-predator efforts of established pairs, which invest similarly with or without neighbors. Further studies are needed to determine the scope of commensalism as an anti-predator strategy in colonial animals
- …