953 research outputs found
Optimal use of Information for Measuring in Lepton+jets Events
We present a novel approach that is being developed at DZero for extracting
information from data through a direct comparison of all measured variables in
an event with a matrix element that describes the entire production process.
The method is exemplified in the extraction of the mass of the top quark in
top-antitop events in the lepton+jets final state. Monte Carlo studies suggest
that an improvement of about a factor of two in statistical uncertainty on the
mass of the top quark can be achieved relative to previously published work for
the same channel. Preliminary results from the re-analysis provide a reduction
in the statistical uncertainty of almost a factor of 1.6, corresponding to an
effective factor of 2.4 increase in the size of the data sample.Comment: presented at HCP200
On BCFW shifts of integrands and integrals
In this article a first step is made towards the extension of
Britto-Cachazo-Feng-Witten (BCFW) tree level on-shell recursion relations to
integrands and integrals of scattering amplitudes to arbitrary loop order.
Surprisingly, it is shown that the large BCFW shift limit of the integrands has
the same structure as the corresponding tree level amplitude in any minimally
coupled Yang-Mills theory in four or more dimensions. This implies that these
integrands can be reconstructed from a subset of their `single cuts'. The main
tool is powercounting Feynman graphs in a special lightcone gauge choice
employed earlier at tree level by Arkani-Hamed and Kaplan. The relation between
shifts of integrands and shifts of its integrals is investigated explicitly at
one loop. Two particular sources of discrepancy between the integral and
integrand are identified related to UV and IR divergences. This is
cross-checked with known results for helicity equal amplitudes at one loop. The
nature of the on-shell residue at each of the single-cut singularities of the
integrand is commented upon. Several natural conjectures and opportunities for
further research present themselves.Comment: 43 pages, 6 figures, v2: minor improvement in exposition, typos
fixed, bibliography update
General analysis of signals with two leptons and missing energy at the Large Hadron Collider
A signal of two leptons and missing energy is challenging to analyze at the
Large Hadron Collider (LHC) since it offers only few kinematical handles. This
signature generally arises from pair production of heavy charged particles
which each decay into a lepton and a weakly interacting stable particle. Here
this class of processes is analyzed with minimal model assumptions by
considering all possible combinations of spin 0, 1/2 or 1, and of weak
iso-singlets, -doublets or -triplets for the new particles. Adding to existing
work on mass and spin measurements, two new variables for spin determination
and an asymmetry for the determination of the couplings of the new particles
are introduced. It is shown that these observables allow one to independently
determine the spin and the couplings of the new particles, except for a few
cases that turn out to be indistinguishable at the LHC. These findings are
corroborated by results of an alternative analysis strategy based on an
automated likelihood test.Comment: 18 pages, 3 figures, LaTe
A compact statistical model of the song syntax in Bengalese finch
Songs of many songbird species consist of variable sequences of a finite
number of syllables. A common approach for characterizing the syntax of these
complex syllable sequences is to use transition probabilities between the
syllables. This is equivalent to the Markov model, in which each syllable is
associated with one state, and the transition probabilities between the states
do not depend on the state transition history. Here we analyze the song syntax
in a Bengalese finch. We show that the Markov model fails to capture the
statistical properties of the syllable sequences. Instead, a state transition
model that accurately describes the statistics of the syllable sequences
includes adaptation of the self-transition probabilities when states are
repeatedly revisited, and allows associations of more than one state to the
same syllable. Such a model does not increase the model complexity
significantly. Mathematically, the model is a partially observable Markov model
with adaptation (POMMA). The success of the POMMA supports the branching chain
network hypothesis of how syntax is controlled within the premotor song nucleus
HVC, and suggests that adaptation and many-to-one mapping from neural
substrates to syllables are important features of the neural control of complex
song syntax
Consumption patterns of sweet drinks in a population of Australian children and adolescents (2003–2008)
<p>Abstract</p> <p>Background</p> <p>Intake of sweet drinks has previously been associated with the development of overweight and obesity among children and adolescents. The present study aimed to assess the consumption pattern of sweet drinks in a population of children and adolescents in Victoria, Australia.</p> <p>Methods</p> <p>Data on 1,604 children and adolescents (4–18 years) from the comparison groups of two quasi-experimental intervention studies from Victoria, Australia were analysed<it>.</it> Sweet drink consumption (soft drink and fruit juice/cordial) was assessed as one day’s intake and typical intake over the last week or month at two time points between 2003 and 2008 (mean time between measurement: 2.2 years).</p> <p>Results</p> <p>Assessed using dietary recalls, more than 70% of the children and adolescents consumed sweet drinks, with no difference between age groups (p = 0.28). The median intake among consumers was 500 ml and almost a third consumed more than 750 ml per day. More children and adolescents consumed fruit juice/cordial (69%) than soft drink (33%) (p < 0.0001) and in larger volumes (median intake fruit juice/cordial: 500 ml and soft drink: 375 ml). Secular changes in sweet drink consumption were observed with a lower proportion of children and adolescents consuming sweet drinks at time 2 compared to time 1 (significant for age group 8 to <10 years, p = 0.001).</p> <p>Conclusion</p> <p>The proportion of Australian children and adolescents from the state of Victoria consuming sweet drinks has been stable or decreasing, although a high proportion of this sample consumed sweet drinks, especially fruit juice/cordial at both time points.</p
Fundamental Concepts
This chapter briefly discusses the fundamental properties of black holes in
general relativity, the discovery of astrophysical black holes and their main
astronomical observations, how X-ray and -ray facilities can study
these objects, and ends with a list of open problems and future developments in
the field.Comment: 14 pages, 4 figures. To appear in "Tutorial Guide to X-ray and
Gamma-ray Astronomy: Data Reduction and Analysis" (Ed. C. Bambi, Springer
Singapore, 2020). v2: fixed some typos and updated some parts. arXiv admin
note: text overlap with arXiv:1711.1025
A Terminal Velocity on the Landscape: Particle Production near Extra Species Loci in Higher Dimensions
We investigate particle production near extra species loci (ESL) in a higher
dimensional field space and derive a speed limit in moduli space at weak
coupling. This terminal velocity is set by the characteristic ESL-separation
and the coupling of the extra degrees of freedom to the moduli, but it is
independent of the moduli's potential if the dimensionality of the field space
is considerably larger than the dimensionality of the loci, D >> d. Once the
terminal velocity is approached, particles are produced at a plethora of nearby
ESLs, preventing a further increase in speed via their backreaction. It is
possible to drive inflation at the terminal velocity, providing a
generalization of trapped inflation with attractive features: we find that more
than sixty e-folds of inflation for sub-Planckian excursions in field space are
possible if ESLs are ubiquitous, without fine tuning of initial conditions and
less tuned potentials. We construct a simple, observationally viable model with
a slightly red scalar power-spectrum and suppressed gravitational waves; we
comment on the presence of additional observational signatures originating from
IR-cascading and individual massive particles. We also show that
moduli-trapping at an ESL is suppressed for D >> d, hindering dynamical
selection of high-symmetry vacua on the landscape based on this mechanism.Comment: 46 pages, 6 figures. V3: typos corrected compared to JHEP version,
conclusions unchange
Phenotypic redshifts with self-organizing maps: A novel method to characterize redshift distributions of source galaxies for weak lensing
Wide-field imaging surveys such as the Dark Energy Survey (DES) rely on
coarse measurements of spectral energy distributions in a few filters to
estimate the redshift distribution of source galaxies. In this regime, sample
variance, shot noise, and selection effects limit the attainable accuracy of
redshift calibration and thus of cosmological constraints. We present a new
method to combine wide-field, few-filter measurements with catalogs from deep
fields with additional filters and sufficiently low photometric noise to break
degeneracies in photometric redshifts. The multi-band deep field is used as an
intermediary between wide-field observations and accurate redshifts, greatly
reducing sample variance, shot noise, and selection effects. Our implementation
of the method uses self-organizing maps to group galaxies into phenotypes based
on their observed fluxes, and is tested using a mock DES catalog created from
N-body simulations. It yields a typical uncertainty on the mean redshift in
each of five tomographic bins for an idealized simulation of the DES Year 3
weak-lensing tomographic analysis of , which is a
60% improvement compared to the Year 1 analysis. Although the implementation of
the method is tailored to DES, its formalism can be applied to other large
photometric surveys with a similar observing strategy.Comment: 24 pages, 11 figures; matches version accepted to MNRA
Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory
This article is meant as a summary and introduction to the ideas of effective
field theory as applied to gravitational systems.
Contents:
1. Introduction
2. Effective Field Theories
3. Low-Energy Quantum Gravity
4. Explicit Quantum Calculations
5. ConclusionsComment: 56 pages, 2 figures, JHEP style, Invited review to appear in Living
Reviews of Relativit
Fluids in cosmology
We review the role of fluids in cosmology by first introducing them in
General Relativity and then by applying them to a FRW Universe's model. We
describe how relativistic and non-relativistic components evolve in the
background dynamics. We also introduce scalar fields to show that they are able
to yield an inflationary dynamics at very early times (inflation) and late
times (quintessence). Then, we proceed to study the thermodynamical properties
of the fluids and, lastly, its perturbed kinematics. We make emphasis in the
constrictions of parameters by recent cosmological probes.Comment: 34 pages, 4 figures, version accepted as invited review to the book
"Computational and Experimental Fluid Mechanics with Applications to Physics,
Engineering and the Environment". Version 2: typos corrected and references
expande
- …