2 research outputs found
The Noncommutative Harmonic Oscillator based in Simplectic Representation of Galilei Group
In this work we study symplectic unitary representations for the Galilei
group. As a consequence the Schr\"odinger equation is derived in phase space.
The formalism is based on the non-commutative structure of the star-product,
and using the group theory approach as a guide a physical consistent theory in
phase space is constructed. The state is described by a quasi-probability
amplitude that is in association with the Wigner function. The 3D harmonic
oscillator and the noncommutative oscillator are studied in phase space as an
application, and the Wigner function associated to both cases are determined.Comment: 7 pages,no figure