5 research outputs found
A dimensioning and tolerancing methodology for concurrent engineering applications I: problem representation
This paper is the first of two which present a methodology for determining the dimensional specifications of all the component parts and sub-assemblies of a product according to their dimensional requirements. To achieve this goal, two major steps are followed, each of which is described in a paper. In the first paper, all relationships necessary for finding the values of dimensions and tolerances are represented in a matrix form, known as a Dimensional Requirements/Dimensions (DR/D) matrix. In the second paper, the values of individual dimensions and tolerances are determined by applying a comprehensive solution strategy to satisfy all the relationships represented in the DR/D matrix. The methodology is interactive and suitable for use in a concurrent engineering (CE) environment. The graphical tool presented in this paper will assist a CE team in visualizing the overall D&T problem and foreseeing the ramifications of decisions regarding the selection of dimensions and tolerances. This will assist the CE team to systematically determine all the controllable variables, such as dimensions, tolerances, and manufacturing processes
A dimensioning and tolerancing methodology for concurrent engineering applications II: comprehensive solution strategy
Dimensioning and tolerancing (D&T) is a multidisciplinary problem which requires the fulfillment of a large number of dimensional requirements. However, almost all of the currently available D&T tools are only intended for use by the designer. In addition, they typically provide solutions for the requirements one at time. This paper presents a methodology for determining the dimensional specifications of the component parts and sub-assemblies of a product by satisfying all of its requirements. The comprehensive solution strategy presented here includes: a strategy for separating D&T problems into groups, the determination of an optimum solution order for coupled functional equations, a generic tolerance allocation strategy, and strategies for solving different types of D&T problems. A number of commonly used cost minimization strategies, such as the use of standard parts, preferred sizes, preferred fits, and preferred tolerances, have also been incorporated into the proposed methodology. The methodology is interactive and intended for use in a concurrent engineering environment by members of a product development team