18 research outputs found

    Microfluidic systems for the analysis of the viscoelastic fluid flow phenomena in porous media

    Get PDF
    In this study, two microfluidic devices are proposed as simplified 1-D microfluidic analogues of a porous medium. The objectives are twofold: firstly to assess the usefulness of the microchannels to mimic the porous medium in a controlled and simplified manner, and secondly to obtain a better insight about the flow characteristics of viscoelastic fluids flowing through a packed bed. For these purposes, flow visualizations and pressure drop measurements are conducted with Newtonian and viscoelastic fluids. The 1-D microfluidic analogues of porous medium consisted of microchannels with a sequence of contractions/ expansions disposed in symmetric and asymmetric arrangements. The real porous medium is in reality, a complex combination of the two arrangements of particles simulated with the microchannels, which can be considered as limiting ideal configurations. The results show that both configurations are able to mimic well the pressure drop variation with flow rate for Newtonian fluids. However, due to the intrinsic differences in the deformation rate profiles associated with each microgeometry, the symmetric configuration is more suitable for studying the flow of viscoelastic fluids at low De values, while the asymmetric configuration provides better results at high De values. In this way, both microgeometries seem to be complementary and could be interesting tools to obtain a better insight about the flow of viscoelastic fluids through a porous medium. Such model systems could be very interesting to use in polymer-flood processes for enhanced oil recovery, for instance, as a tool for selecting the most suitable viscoelastic fluid to be used in a specific formation. The selection of the fluid properties of a detergent for cleaning oil contaminated soil, sand, and in general, any porous material, is another possible application

    Controlled multiphase oxidations for continuous manufacturing of fine chemicals

    Get PDF
    The feasibility of an integrated continuous biphasic oxidation process was studied, incorporating (i) electrochemical generation of an oxidant, (ii) membrane emulsification and an Oscillatory Flow Reactor (OFR) to facilitate mass-transfer in a biphasic reaction system and (iii) product extraction to enable regeneration of the oxidant. The biphasic, organic solvent-free dihydroxylation of styrene by ammonium peroxodisulfate solutions (including electrochemically generated peroxodisulfate) was investigated as a model reaction, both in batch and in an OFR. Heating of peroxodisulfate in a strongly acidic solution was demonstrated to be essential to generate the active oxidant (Caro’s acid). Membrane emulsification allowed mass-transfer limitations to be overcome, reducing the time scale of styrene oxidation from several hours in a conventional stirred tank reactor to less than 50 min in a dispersion cell. The influence of droplet size on overall reaction rate in emulsions was studied in detail using fast image capturing technology. Generation of unstable emulsions was also demonstrated during the oxidation in OFR and product yields >70% were obtained. However, the high-frequency/high-displacement oscillations necessary for generation of fine droplets violated the plug flow regime. Membrane emulsification was successfully integrated with the OFR to perform biphasic oxidations. It was possible to operate the OFR/cross-flow membrane assembly in plug flow regime at some oscillatory conditions with comparable overall oxidation rates. No mass-transfer limitations were observed for droplets <60 μm. Finally, the continuous post-reaction separation was demonstrated in a single OFR extraction unit to enable continuous regeneration of the oxidant

    Design, development and characterization of a novel and innovative exhaust filter media for the global automotive industry

    No full text
    This paper discusses that three-dimensional (3D) warp knitted spacer structures offer significant attributes that create sustainable production advantages in dry exhaust systems for the automotive paint industry. The advantages that are offered include improved airflow and the potential to combine to a composite solution with a high paint holding capacity; this concept of filtration also offers the possibility of a durable filter capable of industrial cleaning and reuse numerous times. The paper describes the innovation of these 3D warp knitted spacer filters from theoretical and traditional filtration aspects, followed by an empirical characterization that justifies commercial trials within the industry

    Microfiltration of Deforming Droplets

    No full text

    The influence of intrinsic and extrinsic factors on developmental parameters and their relationships in the marine isopod Idotea linearis (Crustacea)

    No full text
    Developmental and reproductive parameters and their relationships were studied in the marine isopod Idotea linearis. We hypothesized that (1) the temporal patterns of molting and growth undergo complex and sex-specific changes with age as well as with the onset of sexual maturation, and that (2) sexual maturation (and dependent parameters) is controlled by the photoperiod. Both males and females were singly cultured in the laboratory at two alternative photoperiods (constant long and short days, respectively) from hatching until death. Males molted and grew throughout their life, showing a steady increase in stage duration and body size with each molt. Females, in contrast, showed much more complex modifications in molt chronology due to reproductive demands. There was some variability in the stage number, when females reached maturity. Reaching maturity early in the succession of molts was associated with smaller body size at maturity, smaller size of broods, but higher average number of broods per lifetime. Post-puberty molts in females occurred without further growth, and successive broods did not differ in size. The photoperiod strongly affected sexual maturation (and thus in turn molting and growth patterns) in females, while males remained completely unaffected by the photo regime
    corecore