221 research outputs found

    Monitoring Vascular Permeability and Remodeling After Endothelial Injury in a Murine Model Using a Magnetic Resonance Albumin-Binding Contrast Agent

    Get PDF
    Background-Despite the beneficial effects of vascular interventions, these procedures may damage the endothelium leading to increased vascular permeability and remodeling. Re-endothelialization of the vessel wall, with functionally and structurally intact cells, is controlled by endothelial nitric oxide synthase (NOS3) and is crucial for attenuating adverse effects after injury. We investigated the applicability of the albumin-binding MR contrast agent, gadofosveset, to noninvasively monitor focal changes in vascular permeability and remodeling, after injury, in NOS3-knockout (NOS3(-/-)) and wild-type (WT) mice in vivo.Methods and Results-WT and NOS3(-/-) mice were imaged at 7, 15, and 30 days after aortic denudation or sham-surgery. T-1 mapping (R-1=1/T-1, s(-1)) and delayed-enhanced MRI were used as measurements of vascular permeability (R-1) and remodeling (vessel wall enhancement, mm(2)) after gadofosveset injection, respectively. Denudation resulted in higher vascular permeability and vessel wall enhancement 7 days after injury in both strains compared with sham-operated animals. However, impaired re-endothelialization and increased neovascularization in NOS3(-/-) mice resulted in significantly higher R-1 at 15 and 30 days post injury compared with WT mice that showed re-endothelialization and lack of neovascularization (R-1 [s(-1)]=15 days: (-/-)(NOS3)4.02 [interquartile range, IQR, 3.77-4.41] versus (WT)2.39 [IQR, 2.35-2.92]; 30 days: (-/-)(NOS3)4.23 [IQR, 3.94-4.68] versus (WT)2.64 [IQR, 2.33-2.80]). Similarly, vessel wall enhancement was higher in NOS3(-/-) but recovered in WT mice (area [mm(2)]=15 days: (-/-)(NOS3)5.20 [IQR, 4.68-6.80] versus (WT)2.13 [IQR, 0.97-3.31]; 30 days: (-/-)(NOS3)7.35 [IQR, 5.66-8.61] versus (WT)1.60 [IQR, 1.40-3.18]). Ex vivo histological studies corroborated the MRI findings.Conclusions-We demonstrate that increased vascular permeability and remodeling, after injury, can be assessed noninvasively using an albumin-binding MR contrast agent and may be used as surrogate markers for evaluating the healing response of the vessel wall after injury.</p

    Mitochondrial function is involved in regulation of cholesterol efflux to apolipoprotein (apo)A-I from murine RAW 264.7 macrophages

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mitochondrial DNA damage, increased production of reactive oxygen species and progressive respiratory chain dysfunction, together with increased deposition of cholesterol and cholesteryl esters, are hallmarks of atherosclerosis. This study investigated the role of mitochondrial function in regulation of macrophage cholesterol efflux to apolipoprotein A-I, by the addition of established pharmacological modulators of mitochondrial function.</p> <p>Methods</p> <p>Murine RAW 264.7 macrophages were treated with a range of concentrations of resveratrol, antimycin, dinitrophenol, nigericin and oligomycin, and changes in viability, cytotoxicity, membrane potential and ATP, compared with efflux of [<sup>3</sup>H]cholesterol to apolipoprotein (apo) A-I. The effect of oligomycin treatment on expression of genes implicated in macrophage cholesterol homeostasis were determined by quantitative polymerase chain reaction, and immunoblotting, relative to the housekeeping enzyme, <it>Gapdh</it>, and combined with studies of this molecule on cholesterol esterification, <it>de novo</it> lipid biosynthesis, and induction of apoptosis. Significant differences were determined using analysis of variance, and Dunnett’s or Bonferroni post <it>t</it>-tests, as appropriate.</p> <p>Results</p> <p>The positive control, resveratrol (24 h), significantly enhanced cholesterol efflux to apoA-I at concentrations ≥30 μM. By contrast, cholesterol efflux to apoA-I was significantly inhibited by nigericin (45%; <it>p</it><0.01) and oligomycin (55%; <it>p</it><0.01), under conditions (10 μM, 3 h) which did not induce cellular toxicity or deplete total cellular ATP content. Levels of ATP binding cassette transporter A1 (ABCA1) protein were repressed by oligomycin under optimal efflux conditions, despite paradoxical increases in <it>Abca1</it> mRNA. Oligomycin treatment did not affect cholesterol biosynthesis, but significantly inhibited cholesterol esterification following exposure to acetylated LDL, and induced apoptosis at ≥30 μM. Finally, oligomycin induced the expression of genes implicated in both cholesterol efflux (<it>Abca1</it>, <it>Abcg4</it>, <it>Stard1</it>) and cholesterol biosynthesis (<it>Hmgr</it>, <it>Mvk</it>, <it>Scap</it>, <it>Srebf2</it>), indicating profound dysregulation of cholesterol homeostasis.</p> <p>Conclusions</p> <p>Acute loss of mitochondrial function, and in particular Δψ<sub>m</sub>, reduces cholesterol efflux to apoA-I and dysregulates macrophage cholesterol homeostasis mechanisms. Bioavailable antioxidants, targeted to mitochondria and capable of sustaining effective mitochondrial function, may therefore prove effective in maintenance of arterial health.</p

    Correlating corneal arcus with atherosclerosis in familial hypercholesterolemia

    Get PDF
    Abstract Background A relationship between corneal arcus and atherosclerosis has long been suspected but is controversial. The homozygous familial hypercholesterolemia patients in this study present a unique opportunity to assess this issue. They have both advanced atherosclerosis and corneal arcus. Methods This is a cross-sectional study of 17 patients homozygous for familial hypercholesterolemia presenting to the Clinical Center of the National Institutes of Health. Plasma lipoproteins, circumferential extent of arcus, thoracic aorta and coronary calcific atherosclerosis score, and Achilles tendon width were measured at the National Institutes of Health. Results Patients with corneal arcus had higher scores for calcific atherosclerosis (mean 2865 compared to 412), cholesterol-year score (mean 11830 mg-yr/dl compared to 5707 mg-yr/dl), and Achilles tendon width (mean 2.54 cm compared to 1.41 cm) than those without. Corneal arcus and Achilles tendon width were strongly correlated and predictive of each other. Although corneal arcus was correlated with calcific atherosclerosis (r = 0.67; p = 0.004), it was not as highly correlated as was the Achilles tendon width (r = 0.855; p Conclusion Corneal arcus reflects widespread tissue lipid deposition and is correlated with both calcific atherosclerosis and xanthomatosis in these patients. Patients with more severe arcus tend to have more severe calcific atherosclerosis. Corneal arcus is not as good an indicator of calcific atherosclerosis as Achilles tendon thickness, but its presence suggests increased atherosclerosis in these hypercholesterolemic patients.</p

    Analysis of arterial intimal hyperplasia: review and hypothesis

    Get PDF
    which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background: Despite a prodigious investment of funds, we cannot treat or prevent arteriosclerosis and restenosis, particularly its major pathology, arterial intimal hyperplasia. A cornerstone question lies behind all approaches to the disease: what causes the pathology? Hypothesis: I argue that the question itself is misplaced because it implies that intimal hyperplasia is a novel pathological phenomenon caused by new mechanisms. A simple inquiry into arterial morphology shows the opposite is true. The normal multi-layer cellular organization of the tunica intima is identical to that of diseased hyperplasia; it is the standard arterial system design in all placentals at least as large as rabbits, including humans. Formed initially as one-layer endothelium lining, this phenotype can either be maintained or differentiate into a normal multi-layer cellular lining, so striking in its resemblance to diseased hyperplasia that we have to name it &quot;benign intimal hyperplasia&quot;. However, normal or &quot;benign &quot; intimal hyperplasia, although microscopically identical to pathology, is a controllable phenotype that rarely compromises blood supply. It is remarkable that each human heart has coronary arteries in which a single-layer endothelium differentiates earl

    Fundamentals of aerosol therapy in critical care

    Full text link

    Comparison of Infectious Agents Susceptibility to Photocatalytic Effects of Nanosized Titanium and Zinc Oxides: A Practical Approach

    Get PDF

    2015 Russell Ross Memorial Lecture in Vascular Biology

    Full text link
    corecore