27 research outputs found

    The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes

    Get PDF

    Lymphocyte responses exacerbate angiotensin II-dependent hypertension

    No full text
    Activation of the immune system by ANG II contributes to the pathogenesis of hypertension, and pharmacological suppression of lymphocyte responses can ameliorate hypertensive end-organ damage. Therefore, to examine the mechanisms through which lymphocytes mediate blood pressure elevation, we studied ANG II-dependent hypertension in scid mice lacking lymphocyte responses and wild-type controls. Scid mice had a blunted hypertensive response to chronic ANG II infusion and accordingly developed less cardiac hypertrophy. Moreover, lymphocyte deficiency led to significant reductions in heart and kidney injury following 4 wk of angiotensin. The muted hypertensive response in the scid mice was associated with increased sodium excretion, urine volumes, and weight loss beginning on day 5 of angiotensin infusion. To explore the mechanisms underlying alterations in blood pressure and renal sodium handling, we measured gene expression for vasoactive mediators in the kidney after 4 wk of ANG II administration. Scid mice and controls had similar renal expression for interferon-γ, interleukin-1β, and interleukin-6. By contrast, lymphocyte deficiency (i.e., scid mice) during ANG II infusion led to upregulation of tumor necrosis factor-α, endothelial nitric oxide synthase (eNOS), and cyclooxygenase-2 (COX-2) in the kidney. In turn, this enhanced eNOS and COX-2 expression in the scid kidneys was associated with exaggerated renal generation of nitric oxide, prostaglandin E(2), and prostacyclin, all of which promote natriuresis. Thus, the absence of lymphocyte activity protects from hypertension by allowing blood pressure-induced sodium excretion, possibly via stimulation of eNOS- and COX-2-dependent pathways

    Expression of 5-lipoxygenase (5-LOX) in T lymphocytes

    No full text
    5-lipoxygenase (5-LOX) is the key enzyme responsible for the synthesis of the biologically active leukotrienes. Its presence has been reported in cells of the myeloid lineage and B lymphocytes but has not been formally defined in T lymphocytes. In this study, we provide evidence for 5-LOX expression on both transcriptional and translational levels in highly purified peripheral blood T cells as well as in human T lymphoblastoid cell lines (MOLT4 and Jurkat). Messenger RNA (mRNA) of 5-LOX was amplified by conventional reverse transcription–polymerase chain reaction (RT-PCR; MOLT4 and Jurkat cells) and by in situ RT-PCR (T lymphocytes). 5-LOX protein expression was confirmed by Western blot and immunofluorescence studies. 5-LOX was present primarily in the cytoplasm with some nuclear localization and was translocated to the nuclear periphery after culture in a mitosis-supporting medium. Fluorescence-activated cell sorter analysis of different T-lymphocyte populations, including CD4, CD8, CD45RO, CD45RA, T helper type 2, and T-cell receptor-αβ and -γδ expressing cells, did not identify a differential distribution of the enzyme. Purified peripheral blood T lymphocytes were incapable of synthesizing leukotrienes in the absence of exogenous arachidonic acid. Jurkat cells produced leukotriene C4 and a small amount of leukotriene B4 in response to CD3–CD28 cross-linking. This synthesis was abolished by two inhibitors of leukotriene synthesis, MK-886 and AA-861. The presence of 5-LOX in T lymphocytes but the absence of endogenous lipoxygenase metabolite production compared to Jurkat cells may constitute a fundamental difference between resting peripheral lymphocytes and leukaemic cells
    corecore