55 research outputs found

    The only African wild tobacco, Nicotiana africana: Alkaloid content and the effect of herbivory

    Get PDF
    Herbivory in some Nicotiana species is known to induce alkaloid production. This study examined herbivore-induced defenses in the nornicotine-rich African tobacco N. africana, the only Nicotiana species indigenous to Africa. We tested the predictions that: 1) N. africana will have high constitutive levels of leaf, flower and nectar alkaloids; 2) leaf herbivory by the African bollworm Helicoverpa armigera will induce increased alkaloid levels in leaves, flowers and nectar; and 3) increased alkaloid concentrations in herbivore-damaged plants will negatively affect larval growth. We grew N. africana in large pots in a greenhouse and exposed flowering plants to densities of one, three and six fourth-instar larvae of H. armigera, for four days. Leaves, flowers and nectar were analyzed for nicotine, nornicotine and anabasine. The principal leaf alkaloid was nornicotine (mean: 28 Β΅g/g dry mass) followed by anabasine (4.9 Β΅g/g) and nicotine (0.6 Β΅g/g). Nornicotine was found in low quantities in the flowers, but no nicotine or anabasine were recorded. The nectar contained none of the alkaloids measured. Larval growth was reduced when leaves of flowering plants were exposed to six larvae. As predicted by the optimal defense theory, herbivory had a localized effect and caused an increase in nornicotine concentrations in both undamaged top leaves of herbivore damaged plants and herbivore damaged leaves exposed to one and three larvae. The nicotine concentration increased in damaged compared to undamaged middle leaves. The nornicotine concentration was lower in damaged leaves of plants exposed to six compared to three larvae, suggesting that N. africana rather invests in new growth as opposed to protecting older leaves under severe attack. The results indicate that the nornicotine-rich N. africana will be unattractive to herbivores and more so when damaged, but that potential pollinators will be unaffected because the nectar remains alkaloid-free even after herbivory

    Comparative Genomic Analysis of Drosophila melanogaster and Vector Mosquito Developmental Genes

    Get PDF
    Genome sequencing projects have presented the opportunity for analysis of developmental genes in three vector mosquito species: Aedes aegypti, Culex quinquefasciatus, and Anopheles gambiae. A comparative genomic analysis of developmental genes in Drosophila melanogaster and these three important vectors of human disease was performed in this investigation. While the study was comprehensive, special emphasis centered on genes that 1) are components of developmental signaling pathways, 2) regulate fundamental developmental processes, 3) are critical for the development of tissues of vector importance, 4) function in developmental processes known to have diverged within insects, and 5) encode microRNAs (miRNAs) that regulate developmental transcripts in Drosophila. While most fruit fly developmental genes are conserved in the three vector mosquito species, several genes known to be critical for Drosophila development were not identified in one or more mosquito genomes. In other cases, mosquito lineage-specific gene gains with respect to D. melanogaster were noted. Sequence analyses also revealed that numerous repetitive sequences are a common structural feature of Drosophila and mosquito developmental genes. Finally, analysis of predicted miRNA binding sites in fruit fly and mosquito developmental genes suggests that the repertoire of developmental genes targeted by miRNAs is species-specific. The results of this study provide insight into the evolution of developmental genes and processes in dipterans and other arthropods, serve as a resource for those pursuing analysis of mosquito development, and will promote the design and refinement of functional analysis experiments

    Tight junctions: from simple barriers to multifunctional molecular gates

    Get PDF
    Epithelia and endothelia separate different tissue compartments and protect multicellular organisms from the outside world. This requires the formation of tight junctions, selective gates that control paracellular diffusion of ions and solutes. Tight junctions also form the border between the apical and basolateral plasma-membrane domains and are linked to the machinery that controls apicobasal polarization. Additionally, signalling networks that guide diverse cell behaviours and functions are connected to tight junctions, transmitting information to and from the cytoskeleton, nucleus and different cell adhesion complexes. Recent advances have broadened our understanding of the molecular architecture and cellular functions of tight junctions

    Defining Participant Exposure Measures in Web-Based Health Behavior Change Programs

    No full text
    BACKGROUND: Published research on the use of Web-based behavior change programs is growing rapidly. One of the observations characterized as problematic in these studies is that participants often make relatively few website visits and spend only a brief time accessing the program. Properly structured websites permit the unobtrusive measurement of the ways in which participants access (are exposed to) program content. Research on participant exposure to Web-based programs is not merely of interest to technologists, but represents an important opportunity to better understand the broader theme of program engagement and to guide the development of more effective interventions. OBJECTIVES: The current paper seeks to provide working definitions and describe initial patterns of various measures of participant exposure to ChewFree.com, a large randomized controlled trial of a Web-based program for smokeless tobacco cessation. METHODS: We examined measures of participant exposure to either an Enhanced condition Web-based program (interactive, tailored, and rich-media program) or a Basic condition control website (static, text-based material). Specific measures focused on email prompting, participant visits (number, duration, and pattern of use over time), and Web page viewing (number of views, types of pages viewed, and Web forum postings). RESULTS: Participants in the ChewFree.com Enhanced condition made more visits and spent more time accessing their assigned website than did participants assigned to the Basic condition website. In addition, exposure data demonstrated that Basic condition users thoroughly accessed program content, indicating that the condition provided a meaningful, face-valid control to the Enhanced condition. CONCLUSIONS: We recommend that researchers conducting evaluations of Web-based interventions consider the collection and analysis of exposure measures in the broader context of program engagement in order to assess whether participants obtain sufficient exposure to relevant program content

    Measuring participant rurality in Web-based interventions

    No full text
    <p>Abstract</p> <p>Background</p> <p>Web-based health behavior change programs can reach large groups of disparate participants and thus they provide promise of becoming important public health tools. Data on participant rurality can complement other demographic measures to deepen our understanding of the success of these programs. Specifically, analysis of participant rurality can inform recruitment and social marketing efforts, and facilitate the targeting and tailoring of program content. Rurality analysis can also help evaluate the effectiveness of interventions across population groupings.</p> <p>Methods</p> <p>We describe how the RUCAs (Rural-Urban Commuting Area Codes) methodology can be used to examine results from two Randomized Controlled Trials of Web-based tobacco cessation programs: the ChewFree.com project for smokeless tobacco cessation and the Smokers' Health Improvement Program (SHIP) project for smoking cessation.</p> <p>Results</p> <p>Using RUCAs methodology helped to highlight the extent to which both Web-based interventions reached a substantial percentage of rural participants. The ChewFree program was found to have more rural participation which is consistent with the greater prevalence of smokeless tobacco use in rural settings as well as ChewFree's multifaceted recruitment program that specifically targeted rural settings.</p> <p>Conclusion</p> <p>Researchers of Web-based health behavior change programs targeted to the US should routinely include RUCAs as a part of analyzing participant demographics. Researchers in other countries should examine rurality indices germane to their country.</p
    • …
    corecore