12,803 research outputs found

    A new efficient hyperelastic finite element model for graphene and its application to carbon nanotubes and nanocones

    Full text link
    A new hyperelastic material model is proposed for graphene-based structures, such as graphene, carbon nanotubes (CNTs) and carbon nanocones (CNC). The proposed model is based on a set of invariants obtained from the right surface Cauchy-Green strain tensor and a structural tensor. The model is fully nonlinear and can simulate buckling and postbuckling behavior. It is calibrated from existing quantum data. It is implemented within a rotation-free isogeometric shell formulation. The speedup of the model is 1.5 relative to the finite element model of Ghaffari et al. [1], which is based on the logarithmic strain formulation of Kumar and Parks [2]. The material behavior is verified by testing uniaxial tension and pure shear. The performance of the material model is illustrated by several numerical examples. The examples include bending, twisting, and wall contact of CNTs and CNCs. The wall contact is modeled with a coarse grained contact model based on the Lennard-Jones potential. The buckling and post-buckling behavior is captured in the examples. The results are compared with reference results from the literature and there is good agreement

    The multiplicative deformation split for shells with application to growth, chemical swelling, thermoelasticity, viscoelasticity and elastoplasticity

    Full text link
    This work presents a general unified theory for coupled nonlinear elastic and inelastic deformations of curved thin shells. The coupling is based on a multiplicative decomposition of the surface deformation gradient. The kinematics of this decomposition is examined in detail. In particular, the dependency of various kinematical quantities, such as area change and curvature, on the elastic and inelastic strains is discussed. This is essential for the development of general constitutive models. In order to fully explore the coupling between elastic and different inelastic deformations, the surface balance laws for mass, momentum, energy and entropy are examined in the context of the multiplicative decomposition. Based on the second law of thermodynamics, the general constitutive relations are then derived. Two cases are considered: Independent inelastic strains, and inelastic strains that are functions of temperature and concentration. The constitutive relations are illustrated by several nonlinear examples on growth, chemical swelling, thermoelasticity, viscoelasticity and elastoplasticity of shells. The formulation is fully expressed in curvilinear coordinates leading to compact and elegant expressions for the kinematics, balance laws and constitutive relations
    • …
    corecore