962 research outputs found

    Phytoplankton periodicity: its motivation, mechanisms and manipulation

    Get PDF
    This review summarizes some recent work to find a generalized explanation of phytoplankton periodicity in lakes. Much of the observational and experimental evidence is drawn from work centred on the large enclosures (Lund Tubes) installed in Blelham Tarn, English Lake District. Observations on the phytoplankton in the tubes are related to the periodic changes that occur in natural lakes and it is suggested that such changes have common patterns, that they are due to common causes, that they are affected by similar processes and that they are therefore predictable and, potentially, manipulable

    Eutrophication and the management of planktonic algae: What Vollenweider couldn't tell us

    Get PDF
    The ”Vollenweider model” is a sophisticated mathematical statement about the long-range behaviour of (mainly temperate) lakes and their ability to support phytoplankton chlorophyll. Misapplication of the model, against which Vollenweider himself warned, has led to many misconceptions about the dynamics of plankton in lakes and reservoirs and about how best to manage systems subject to eutrophication. This contribution intends to frame the most important issues in context of the phosphorus- loading and phosphorus-limitation concepts. Emphasis is placed on the need to distinguish rate-limitation from capacity-limitation, to understand which is more manageable and why, to discern the mechanisms of internal recycling and their importance, and to appreciate the respective roles of physical and biotic components in local control of algal dynamics. Some general approaches to the management of water quality in lakes and reservoirs to eutrophication are outlined

    Processes controlling the quantities of biogenic materials in lakes and reservoirs subject to cultural eutrophication

    Get PDF
    The processes which control the growth, composition, succession and loss from suspension of phytoplankton algae are briefly reviewed, with special reference to function in eutrophic reservoir systems. The ecology of larger algal biomasses supported by high nutrient loading rates are more likely to be subject to physical (wash-out, underwater light penetration, thermal stability and mixing) than to chemical constraints. Sudden changes in the interactions between physical factors temporarily impair the growth of dominant algal species, and advance the succession. Certain algae may be cropped heavily, but selectively, by zooplankton feeding, but they are rarely the species which cause problems in waterworks practice. Grazing, however, does influence succession. A deeper understanding of the operation of loss control mechanism is urgently required. Potentially, manipulation of the physical environment provides an important means of alleviating day-to-day algal problems in eutrophic reservoirs; in terms of cost effectiveness these may prove to be more attractive than reducing nutrient loads at source

    The phytoplankton of an enriched, soft-water lakel subject to intermittent hydraulic flushing (Grasmere, English Lake District)

    Get PDF
    This paper describes some characteristic features of the phytoplankton of Grasmere, one of the smaller of the principal lakes of the English Lake District, and attempts to relate these to distinctive physical and chemical properties of the lake. Quantitative data presented herein are derived from 5-m vertical column samples, collected with a flexible polyethylene hose close to the deepest point of Grasmere, generally at intervals of 14 days ( 7 days from 1972 to 1978, inclusive). The study concludes that although Grasmere has been subject to increased phosphorus-loading and has quickly developed many features associated with eutrophication, the composition of its plankton has retained the characteristics of a mesotrophic, soft-water lake: a vernal diatom maximum, generally dominated by Asterionella, is followed by summer growths of nanoplanktonic species, of various colonial Chlorophyceae, before a substantial return to Asterionella-dominance in the autumn

    The ecology of phytoplankton in Shropshire and Cheshire meres

    Get PDF
    This review summarizes the findings of 5 years' research (June 1970-June 1975) on the meres of the Shropshire-Cheshire Plain. A mere is a small, shallow lake; supplied principally by ground water, whose chemical composition is infkuenced by the glacial frift through which it is percolating. The seasonal periodicity of the phytoplankton in the meres involved work mainly in the Grose Mere. Here diatoms were typically dominant in Feb & March, green algae in April & May, blue-green algae in early summer and dinoflagellates in late summer. This pattern is broadly similar from year to year, and has been suggested to be representative of a 'regional type'; it is also similar to that described for many of the world's mildly eutrophic temperate lakes. Vertical distribution of phytoplankton is influenced by their buoyancy (or lack of it) of by their ability to swim. A stylized depth-time distribution of 4 major phytoplankton components in Crose Mere is given diagrammatically

    Active reservoir management: a model solution

    Get PDF
    Steady-state procedures, of their very nature, cannot deal with dynamic situations. Statistical models require extensive calibration, and predictions often have to be made for environmental conditions which are often outside the original calibration conditions. In addition, the calibration requirement makes them difficult to transfer to other lakes. To date, no computer programs have been developed which will successfully predict changes in species of algae. The obvious solution to these limitations is to apply our limnological knowledge to the problem and develop functional models, so reducing the requirement for such rigorous calibration. Reynolds has proposed a model, based on fundamental principles of algal response to environmental events, which has successfully recreated the maximum observed biomass, the timing of events and a fair simulation of the species succession in several lakes. A forerunner of this model was developed jointly with Welsh Water under contract to Messrs. Wallace Evans and Partners, for use in the Cardiff Bay Barrage study. In this paper the authors test a much developed form of this original model against a more complex data-set and, using a simple example, show how it can be applied as an aid in the choice of management strategy for the reduction of problems caused by eutrophication. Some further developments of the model are indicated

    The Cheshire Meres an analysis of data and a prioritisation of sites

    Get PDF
    This is a report on the Analysis of Data and a Prioritisation of Sites at the Cheshire Meres by the Institute of Freshwater Ecology. The report addresses data collected by the Agency for 24 basin sites in Cheshire. At least two samples were collected from each site, though not simultaneously. Sites were visited in May/June and in November. The determinands are standard and they included: water, temperature, conductivity, pH, DO, fractional white light penetration, TSS, chlorophyll, TP, ortho-phosphate, nitrate-, nitrite-, ammonium and silicate. Though concentrations were often higher than for other lakes in the region, rather exceeding criteria for classification as eutrophic lakes, the results confirmed that the series of lakes is, naturally, highly eutrophic and nothing in the present data differs so far from expectation that is persuasive that the ecosystems are reacting adversely to environmental stress. The data set is review and summarised, site-by-site, in an appendix. The grounds for prioritisation are discussed. Whether or not this preferred prioritised option is adopted, the Agency is recommended to review the way it carries out monitoring. The determinands and the sampling frequency need to be geared to the information that is required

    An annotated bibliography of aquatic sediment traps and trapping methods

    Get PDF
    This annotated bibliography is intended to give as reasonably complete a review of the existing literature as possible, and to offer some practical guidance in the selection and operation of sediment traps in future monitoring programmes

    Radio Source Heating in the ICM: The Example of Cygnus A

    Full text link
    One of the most promising solutions for the cooling flow problem involves energy injection from the central AGN. However it is still not clear how collimated jets can heat the ICM at large scale, and very little is known concerning the effect of radio lobe expansion as they enter into pressure equilibrium with the surrounding cluster gas. Cygnus A is one of the best examples of a nearby powerful radio galaxy for which the synchrotron emitting plasma and thermal emitting intra-cluster medium can be mapped in fine detail, and previous observations have inferred possible shock structure at the location of the cocoon. We use new XMM-Newton observations of Cygnus A, in combination with deep Chandra observations, to measure the temperature of the intra-cluster medium around the expanding radio cavities. We investigate how inflation of the cavities may relate to shock heating of the intra-cluster gas, and whether such a mechanism is sufficient to provide enough energy to offset cooling to the extent observed.Comment: To appear in the Proceedings of "Heating vs. Cooling in Galaxies and Clusters of Galaxies", August 2006, Garching (Germany), Eds. H. Boehringer, G.W. Pratt, A. Finoguenov, P. Schuecker, Springer-Verlag series "ESO Astrophysics Symposia", p.101, in press. 8 pages, 3 multiple figure

    The relation between accretion rate and jet power in X-ray luminous elliptical galaxies

    Full text link
    Using Chandra X-ray observations of 9 nearby, X-ray luminous ellipticals with good optical velocity dispersion measurements, we show that a tight correlation exists between the Bondi accretion rates calculated from the X-ray data and estimated black hole masses, and the power emerging from these systems in relativistic jets. The jet powers, inferred from the energies and timescales required to inflate the cavities observed in the surrounding X-ray emitting gas, can be related to the accretion rates by a power law model. A significant fraction (2.2^{+1.0}_{-0.7} per cent, for P_jet=10^{43} erg/s) of the energy associated with the rest mass of material entering the accretion radius eventually emerges in the jets. The data also hint that this fraction may rise slightly with increasing jet power. Our results have significant implications for studies of accretion, jet formation and galaxy formation. The tight correlation between P_Bondi and P_jet suggests that the Bondi formulae provide a reasonable description of the accretion process, despite the likely presence of magnetic pressure and angular momentum in the accreting gas, and that the accretion flows are approximately stable over timescales of a few million years. Our results show that the black hole `engines' at the hearts of large elliptical galaxies and groups can feed back sufficient energy to stem cooling and star formation, leading naturally to the observed exponential cut off at the bright end of the galaxy luminosity function.Comment: Accepted for publication in MNRAS. 10 pages, 4 figures. Includes an enhanced statistical analysis and some additional data. Conclusions unchange
    corecore