1,933 research outputs found

    Quantum limits in interferometric measurements

    Full text link
    Quantum noise limits the sensitivity of interferometric measurements. It is generally admitted that it leads to an ultimate sensitivity, the ``standard quantum limit''. Using a semi-classical analysis of quantum noise, we show that a judicious use of squeezed states allows one in principle to push the sensitivity beyond this limit. This general method could be applied to large scale interferometers designed for gravitational wave detection.Comment: 4 page

    Casimir-Polder shifts on quantum levitation states

    Full text link
    An ultracold atom above a horizontal mirror experiences quantum reflection from the attractive Casimir-Polder interaction, which holds it against gravity and leads to quantum levitation states. We analyze this system by using a Liouville transformation of the Schr\"odinger equation and a Langer coordinate adapted to problems with a classical turning point. Reflection on the Casimir-Polder attractive well is replaced by reflection on a repulsive wall and the problem is then viewed as an ultracold atom trapped inside a cavity with gravity and Casimir-Polder potentials acting respectively as top and bottom mirrors. We calculate numerically Casimir-Polder shifts of the energies of the cavity resonances and propose a new approximate treatment which is precise enough to discuss spectroscopy experiments aiming at tests of the weak equivalence principle on antihydrogen. We also discuss the lifetimes by calculating complex energies associated with cavity resonances.Comment: Accepted in PR

    A multi-channel optical plug-in module for gigabit data reception

    Get PDF
    A plug-in module has been built for reception of optically transmitted data by gigabit applications. The optical receiving module is based on a 12-channel optical receiver and an FPGA with embedded high-speed deserializers. It is compatible with the serializer ASIC used by many LHC systems. Due to its compact design, several of these modules could be plugged into VME readout systems. This module will be the principle element for both the CMS Preshower data concentrator card and the TOTEM front-end driver

    Group Analysis of Self-organizing Maps based on Functional MRI using Restricted Frechet Means

    Full text link
    Studies of functional MRI data are increasingly concerned with the estimation of differences in spatio-temporal networks across groups of subjects or experimental conditions. Unsupervised clustering and independent component analysis (ICA) have been used to identify such spatio-temporal networks. While these approaches have been useful for estimating these networks at the subject-level, comparisons over groups or experimental conditions require further methodological development. In this paper, we tackle this problem by showing how self-organizing maps (SOMs) can be compared within a Frechean inferential framework. Here, we summarize the mean SOM in each group as a Frechet mean with respect to a metric on the space of SOMs. We consider the use of different metrics, and introduce two extensions of the classical sum of minimum distance (SMD) between two SOMs, which take into account the spatio-temporal pattern of the fMRI data. The validity of these methods is illustrated on synthetic data. Through these simulations, we show that the three metrics of interest behave as expected, in the sense that the ones capturing temporal, spatial and spatio-temporal aspects of the SOMs are more likely to reach significance under simulated scenarios characterized by temporal, spatial and spatio-temporal differences, respectively. In addition, a re-analysis of a classical experiment on visually-triggered emotions demonstrates the usefulness of this methodology. In this study, the multivariate functional patterns typical of the subjects exposed to pleasant and unpleasant stimuli are found to be more similar than the ones of the subjects exposed to emotionally neutral stimuli. Taken together, these results indicate that our proposed methods can cast new light on existing data by adopting a global analytical perspective on functional MRI paradigms.Comment: 23 pages, 5 figures, 4 tables. Submitted to Neuroimag

    Roughness correction to the Casimir force : Beyond the Proximity Force Approximation

    Full text link
    We calculate the roughness correction to the Casimir effect in the parallel plates geometry for metallic plates described by the plasma model. The calculation is perturbative in the roughness amplitude with arbitrary values for the plasma wavelength, the plate separation and the roughness correlation length. The correction is found to be always larger than the result obtained in the Proximity Force Approximation.Comment: 7 pages, 3 figures, v2 with minor change

    Casimir torque between corrugated metallic plates

    Full text link
    We consider two parallel corrugated plates and show that a Casimir torque arises when the corrugation directions are not aligned. We follow the scattering approach and calculate the Casimir energy up to second order in the corrugation amplitudes, taking into account nonspecular reflections, polarization mixing and the finite conductivity of the metals. We compare our results with the proximity force approximation, which overestimates the torque by a factor 2 when taking the conditions that optimize the effect. We argue that the Casimir torque could be measured for separation distances as large as 1 ÎŒm.\mu{\rm m}.Comment: 7 pages, 3 figures, contribution to QFEXT07 proceeding

    Renormalon disappearance in Borel sum of the 1/N expansion of the Gross-Neveu model mass gap

    Full text link
    The exact mass gap of the O(N) Gross-Neveu model is known, for arbitrary NN, from non-perturbative methods. However, a "naive" perturbative expansion of the pole mass exhibits an infinite set of infrared renormalons at order 1/N, formally similar to the QCD heavy quark pole mass renormalons, potentially leading to large O(Λ){\cal O}(\Lambda) perturbative ambiguities. We examine the precise vanishing mechanism of such infrared renormalons, which avoids this (only apparent)contradiction, and operates without need of (Borel) summation contour prescription, usually preventing unambiguous separation of perturbative contributions. As a consequence we stress the direct Borel summability of the (1/N) perturbative expansion of the mass gap. We briefly speculate on a possible similar behaviour of analogous non-perturbative QCD quantities.Comment: 16 pp., 1 figure. v2: a few paragraphs and one appendix added, title and abstract slightly changed, essential results unchange
    • 

    corecore