133 research outputs found

    Poisson structures on affine spaces and flag varieties. I. Matrix affine Poisson space

    Get PDF
    The standard Poisson structure on the rectangular matrix variety Mm,n(C) is investigated, via the orbits of symplectic leaves under the action of the maximal torus T ⊂ GLm+n(C). These orbits, finite in number, are shown to be smooth irreducible locally closed subvarieties of Mm,n(C), isomorphic to intersections of dual Schubert cells in the full flag variety of GLm+n(C). Three different presentations of the T-orbits of symplectic leaves in Mm,n(C) are obtained – (a) as pullbacks of Bruhat cells in GLm+n(C) under a particular map; (b) in terms of rank conditions on rectangular submatrices; and (c) as matrix products of sets similar to double Bruhat cells in GLm(C) and GLn(C). In presentation (a), the orbits of leaves are parametrized by a subset of the Weyl group Sm+n, such that inclusions of Zariski closures correspond to the Bruhat order. Presentation (b) allows explicit calculations of orbits. From presentation (c) it follows that, up to Zariski closure, each orbit of leaves is a matrix product of one orbit with a fixed column-echelon form and one with a fixed rowechelon form. Finally, decompositions of generalized double Bruhat cells in Mm,n(C) (with respect to pairs of partial permutation matrices) into unions of T-orbits of symplectic leaves are obtained

    Quasiparticle spectra in the vicinity of a d-wave vortex

    Full text link
    We discuss the evolution of the local quasiparticle spectral density and the related tunneling conductance measurable by the scanning tunneling microscope, as a function of distance r and angle \theta from the vortex core in a d_{x^2-y^2} superconductor. We consider the effects of electronic disorder and of a strongly anisotropic tunneling matrix element, and show that in real materials they will likely obscure the ~1/r asymptotic tail in the zero-bias tunneling conductance expected from the straightforward semiclassical analysis. We also give a prediction for the tunneling conductance anisotropy around the vortex core and establish a connection to the structure of the tunneling matrix element.Comment: 9 pages REVTeX + 5 PostScript figures. For related work and info visit http://www.pha.jhu.edu/~fran

    Effect of controlled disorder on quasiparticle thermal transport in Bi2_2Sr2_2CaCu2_2O8_8

    Full text link
    Low temperature thermal conductivity, κ\kappa, of optimally-doped Bi2212 was studied before and after the introduction of point defects by electron irradiation. The amplitude of the linear component of κ\kappa remains unchanged, confirming the universal nature of heat transport by zero-energy quasiparticles. The induced decrease in the absolute value of κ\kappa at finite temperatures allows us to resolve a nonuniversal term in κ\kappa due to conduction by finite-energy quasiparticles. The magnitude of this term provides an estimate of the quasiparticle lifetime at subkelvin temperatures.Comment: 5 pages including 2 .eps figuer

    Tunneling spectra of submicron Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} intrinsic Josephson junctions: evolution from superconducting gap to pseudogap

    Full text link
    Tunneling spectra of near optimally doped, submicron Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} intrinsic Josephson junctions are presented, and examined in the region where the superconducting gap evolves into pseudogap. The spectra are analyzed using a self-energy model, proposed by Norman {\it et al.}, in which both quasiparticle scattering rate Γ\Gamma and pair decay rate ΓΔ\Gamma_{\Delta} are considered. The density of states derived from the model has the familiar Dynes' form with a simple replacement of Γ\Gamma by γ+\gamma_+ = (Γ\Gamma + ΓΔ\Gamma_{\Delta})/2. The γ+\gamma_+ parameter obtained from fitting the experimental spectra shows a roughly linear temperature dependence, which puts a strong constraint on the relation between Γ\Gamma and ΓΔ\Gamma_{\Delta}. We discuss and compare the Fermi arc behavior in the pseudogap phase from the tunneling and angle-resolved photoemission spectroscopy experiments. Our results indicate an excellent agreement between the two experiments, which is in favor of the precursor pairing view of the pseudogap.Comment: 7 pages, 6 figure

    On the low temperature properties and specific anisotropy of pure anisotropically paired superconductors

    Full text link
    Dependences of low temperature behavior and anisotropy of various physical quantities for pure unconventional superconductors upon a particular form of momentum direction dependence for the superconducting order parameter (within the framework of the same symmetry type of superconducting pairing) are considered. A special attention is drawn to the possibility of different multiplicities of the nodes of the order parameter under their fixed positions on the Fermi surface, which are governed by symmetry. The problem of an unambiguous identification of a type of superconducting pairing on the basis of corresponding experimental results is discussed. Quasiparticle density of states at low energy for both homogeneous and mixed states, the low temperature dependences of the specific heat, penetration depth and thermal conductivity, the I-V curves of SS and NS tunnel junctions at low voltages are examined. A specific anisotropy of the boundary conditions for unconventional superconducting order parameter near TcT_c for the case of specular reflection from the boundary is also investigated.Comment: 20 page

    Quasiparticle excitation in and around the vortex core of underdoped YBa_2Cu_4O_8 studied by site-selective NMR

    Full text link
    We report a site-selective ^{17}O spin-lattice relaxation rate T_1^{-1} in the vortex state of underdoped YBa_2Cu_4O_8. We found that T_1^{-1} at the planar sites exhibits an unusual nonmonotonic NMR frequency dependence. In the region well outside the vortex core, T_1^{-1} cannot be simply explained by the density of states of the Doppler-shifted quasiparticles in the d-wave superconductor. Based on T_1^{-1} in the vortex core region, we establish strong evidence that the local density of states within the vortex core is strongly reduced.Comment: 5 pages, 3 figure

    Biomarkers and longitudinal changes in lumbar spine degeneration and low back pain: the Johnston County Osteoarthritis Project

    Get PDF
    Objective: To determine if baseline biomarkers are associated with longitudinal changes in the worsening of disc space narrowing (DSN), vertebral osteophytes (OST), and low back pain (LBP). Design: Paired baseline (2003–2004) and follow-up (2006–2010) lumbar spine radiographs from the Johnston County Osteoarthritis Project were graded for severity of DSN and OST. LBP severity was self-reported. Concentrations of analytes (cytokines, proteoglycans, and neuropeptides) were quantified by immunoassay. Pressure-pain threshold (PPT), a marker of sensitivity to pressure pain, was measured with a standard dolorimeter. Binary logistic regression models were used to estimate odd ratios (OR) and 95% confidence intervals (CI) of biomarker levels with DSN, OST, or LBP. Interactions were tested between biomarker levels and the number of affected lumbar spine levels or LBP. Results: We included participants (n = 723) with biospecimens, PPT, and paired lumbar spine radiographic data. Baseline Lumican, a proteoglycan reflective of extracellular matrix changes, was associated with longitudinal changes in DSN worsening (OR = 3.19 [95% CI 1.22, 8.01]). Baseline brain-derived neuropathic factor, a neuropeptide, (OR = 1.80 [95% CI 1.03, 3.16]) was associated with longitudinal changes in OST worsening, which may reflect osteoclast genesis. Baseline hyaluronic acid (OR = 1.31 [95% CI 1.01, 1.71]), indicative of systemic inflammation, and PPT (OR = 1.56 [95% CI 1.02, 2.31]) were associated with longitudinal increases in LBP severity. Conclusion: These findings suggest that baseline biomarkers are associated with longitudinal changes occurring in structures of the lumbar spine (DSN vs OST). Markers of inflammation and perceived pressure pain sensitivity were associated with longitudinal worsening of LBP

    Angle-resolved photoemission in doped charge-transfer Mott insulators

    Get PDF
    A theory of angle-resolved photoemission (ARPES) in doped cuprates and other charge-transfer Mott insulators is developed taking into account the realistic (LDA+U) band structure, (bi)polaron formation due to the strong electron-phonon interaction, and a random field potential. In most of these materials the first band to be doped is the oxygen band inside the Mott-Hubbard gap. We derive the coherent part of the ARPES spectra with the oxygen hole spectral function calculated in the non-crossing (ladder) approximation and with the exact spectral function of a one-dimensional hole in a random potential. Some unusual features of ARPES including the polarisation dependence and spectral shape in YBa2Cu3O7 and YBa2Cu4O8 are described without any Fermi-surface, large or small. The theory is compatible with the doping dependence of kinetic and thermodynamic properties of cuprates as well as with the d-wave symmetry of the superconducting order parameter.Comment: 8 pages (RevTeX), 10 figures, submitted to Phys. Rev.

    \eta-superconductivity in the Hubbard chain with pair hopping

    Full text link
    The ground state phase diagram of the 1D Hubbard chain with pair-hopping interaction is studied. The analysis of the model is performed using the continuum-limit field theory approach and exact diagonalization studies. At half-filling the phase diagram is shown to consist of two superconducting states with Cooper pair center-of-mass momentum Q=0 (BCS-\eta_0 phase) and Q=\pi (\eta_\pi-phase) and four insulating phases corresponding to the Mott antiferromagnet, the Peierls dimerized phase, the charge-density-wave (CDW) insulator as well as an unconventional insulating phase characterized by the coexistence of a CDW and a bond-located staggered magnetization. Away from half-filling the phase diagram consists of the superconducting BCS-\eta_0 and \eta_\pi phases and the metallic Luttinger-liquid phase. The BCS-\eta_0 phase exhibits smooth crossover from a weak-coupling BCS type to a strong coupling local-pair regime. The \eta_\pi phase shows properties of the doublon (zero size Cooper pair) superconductor with Cooper pair center-of-mass momentum Q=\pi. The transition into the \eta_\pi- paired state corresponds to an abrupt change in the groundstate structure. After the transition the conduction band is completely destroyed and a new \eta_\pi-pair band corresponding to the strongly correlated doublon motion is created.Comment: 15 pages Revtex, 15 embedded eps figure

    Colossal dielectric constants in transition-metal oxides

    Get PDF
    Many transition-metal oxides show very large ("colossal") magnitudes of the dielectric constant and thus have immense potential for applications in modern microelectronics and for the development of new capacitance-based energy-storage devices. In the present work, we thoroughly discuss the mechanisms that can lead to colossal values of the dielectric constant, especially emphasising effects generated by external and internal interfaces, including electronic phase separation. In addition, we provide a detailed overview and discussion of the dielectric properties of CaCu3Ti4O12 and related systems, which is today's most investigated material with colossal dielectric constant. Also a variety of further transition-metal oxides with large dielectric constants are treated in detail, among them the system La2-xSrxNiO4 where electronic phase separation may play a role in the generation of a colossal dielectric constant.Comment: 31 pages, 18 figures, submitted to Eur. Phys. J. for publication in the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom
    corecore