3,737 research outputs found
Energy and land use in the Pamir-Alai Mountains
In a comparative study of energy resources and energy consumption patterns in the Pamir-Alai Mountains of Kyrgyzstan and Tajikistan, the relations between energy consumption, land use, and livelihoods were investigated. An approach that presents energy flow through an ecosystem was developed, in particular to highlight ecosystem services and the scope of action for human interventions in the energy-land management nexus. Qualitative data were collected during a field study in October 2009 through household interviews and group discussions. Based on the relationship between energy supply and ecosystem services, typical village profiles depicting the flows of energy and financial assets are presented that illustrate the relation between energy resources, land use, and livelihood assets. The household interviews reflect situations in the different villages and allow a distinction to be made between the energy consumption patterns of poor and wealthier families. This case study in the Pamir-Alai Mountains emphasizes that a reappraisal of energy as a central focus within mountain ecosystems and their services to the population is necessary for both ecosystem preservation and poverty reduction
The cost effectiveness of integrated care for people living with HIV including antiretroviral treatment in a primary health care centre in Bujumbura, Burundi
The incremental cost effectiveness of an integrated care package (i.e., medical care including antiretroviral therapy (ART) and other services such as psychological and social support) for people living with HIV/AIDS was calculated in a not-for-profit primary health care centre in Bujumbura run by Society of Women against AIDS-Burundi (SWAA-Burundi), an African non-governmental organisation (NGO). Results are expressed as cost-effectiveness ratio 2007, constant US per DALY averted. The package of care provided by SWAA-Burundi is therefore a very cost-effective intervention in comparison with other interventions against HIV/AIDS that include ART. It is however, less cost effective than other types of interventions against HIV/AIDS, such as preventive activities
The impact of stellar feedback on the density and velocity structure of the interstellar medium
We study the impact of stellar feedback in shaping the density and velocity
structure of neutral hydrogen (HI) in disc galaxies. For our analysis, we carry
out pc resolution -body+adaptive mesh refinement (AMR)
hydrodynamic simulations of isolated galaxies, set up to mimic a Milky Way
(MW), and a Large and Small Magellanic Cloud (LMC, SMC). We quantify the
density and velocity structure of the interstellar medium using power spectra
and compare the simulated galaxies to observed HI in local spiral galaxies from
THINGS (The HI Nearby Galaxy Survey). Our models with stellar feedback give an
excellent match to the observed THINGS HI density power spectra. We find that
kinetic energy power spectra in feedback regulated galaxies, regardless of
galaxy mass and size, show scalings in excellent agreement with super-sonic
turbulence () on scales below the thickness of the HI
layer. We show that feedback influences the gas density field, and drives gas
turbulence, up to large (kpc) scales. This is in stark contrast to density
fields generated by large scale gravity-only driven turbulence. We conclude
that the neutral gas content of galaxies carries signatures of stellar feedback
on all scales.Comment: 19 pages, 13 figures, 2 tables, accepted for publication in Monthly
Notices of the Royal Astronomical Societ
100 GHz Spaced 10 Gbit/s WDM over 10 degrees C to 70 degrees C using an uncooled DBR laser
100 GHz spaced 10 Gbit/s (NRZ, PRBS 2(31)-1) WDM transmission is demonstrated with an uncooled DBR laser. The wavelength of the laser was stabilised within 2 GHz from 10 degrees C to 70 degrees C using a predicting algorithm. (C) 2004 Optical Society of America
A monolithic MQW InP/InGaAsP-based comb generator
We report a monolithic optical frequency comb generator using quaternary/quaternary multiple quantum well InV/InGaAsP material as phase modulator and gain medium in a Frequency Modulated (FM) laser design. The modulation was generated by quantum confined Stark effect to achieve a comb-line spacing of 24.4 GHz. The laser was fabricated using a single epitaxial growth step and quantum well intermixing to realize low loss phase and modulation sections. The resulting comb generator produces lines with a spacing exactly given by the modulation frequency, differential phase noise between adjacent lines of -82 dBc/Hz at 1 kHz offset and a comb spectrum width of up to 2 THz
Relativistic Winds from Compact Gamma-ray Sources: I. Radiative Acceleration in the Klein-Nishina Regime
We consider the radiative acceleration to relativistic bulk velocities of a
cold, optically thin plasma which is exposed to an external source of
gamma-rays. The flow is driven by radiative momentum input to the gas, the
accelerating force being due to Compton scattering in the relativistic
Klein-Nishina limit. The bulk Lorentz factor of the plasma, Gamma, derived as a
function of distance from the radiating source, is compared with the
corresponding result in the Thomson limit. Depending on the geometry and
spectrum of the radiation field, we find that particles are accelerated to the
asymptotic Lorentz factor at infinity much more rapidly in the relativistic
regime; and the radiation drag is reduced as blueshifted, aberrated photons
experience a decreased relativistic cross section and scatter preferentially in
the forward direction. The random energy imparted to the plasma by gamma-rays
can be converted into bulk motion if the hot particles execute many Larmor
orbits before cooling. This `Compton afterburn' may be a supplementary source
of momentum if energetic leptons are injected by pair creation, but can be
neglected in the case of pure Klein-Nishina scattering. Compton drag by
side-scattered radiation is shown to be more important in limiting the bulk
Lorentz factor than the finite inertia of the accelerating medium. The
processes discussed here may be relevant to a variety of astrophysical
situations where luminous compact sources of hard X- and gamma-ray photons are
observed, including active galactic nuclei, galactic black hole candidates, and
gamma-ray bursts.Comment: LateX, 20 pages, 5 figures, revised version accepted for publication
in the Ap
Large and small-scale structures and the dust energy balance problem in spiral galaxies
The interstellar dust content in galaxies can be traced in extinction at
optical wavelengths, or in emission in the far-infrared. Several studies have
found that radiative transfer models that successfully explain the optical
extinction in edge-on spiral galaxies generally underestimate the observed
FIR/submm fluxes by a factor of about three. In order to investigate this
so-called dust energy balance problem, we use two Milky Way-like galaxies
produced by high-resolution hydrodynamical simulations. We create mock optical
edge-on views of these simulated galaxies (using the radiative transfer code
SKIRT), and we then fit the parameters of a basic spiral galaxy model to these
images (using the fitting code FitSKIRT). The basic model includes smooth
axisymmetric distributions along a S\'ersic bulge and exponential disc for the
stars, and a second exponential disc for the dust. We find that the dust mass
recovered by the fitted models is about three times smaller than the known dust
mass of the hydrodynamical input models. This factor is in agreement with
previous energy balance studies of real edge-on spiral galaxies. On the other
hand, fitting the same basic model to less complex input models (e.g. a smooth
exponential disc with a spiral perturbation or with random clumps), does
recover the dust mass of the input model almost perfectly. Thus it seems that
the complex asymmetries and the inhomogeneous structure of real and
hydrodynamically simulated galaxies are a lot more efficient at hiding dust
than the rather contrived geometries in typical quasi-analytical models. This
effect may help explain the discrepancy between the dust emission predicted by
radiative transfer models and the observed emission in energy balance studies
for edge-on spiral galaxies.Comment: 9 pages, 5 figures, accepted for publication in A&
A monolithic MQW InP-InGaAsP-Based optical comb generator
We report the first demonstration of a monolithic optical-frequency comb generator. The device is based on multi-section quaternary/quaternary eight-quantum-well InP-InGaAsP material in a frequency-modulated (FM) laser design. The modulation is generated using quantum-confined Stark-effect phase-induced refractive index modulation to achieve fast modulation up to 24.4 GHz. The laser was fabricated using a single epitaxial growth step and quantum-well intermixing to realize low-loss phase adjustment and modulation sections. The output was quasicontinuous wave with intensity modulation at less than 20% for a total output power of 2 mW. The linewidth of each line was limited by the linewidth of the free running laser at an optimum of 25 MHz full-width at half-maximum. The comb generator produces a number of lines with a spacing exactly equal to the modulation frequency (or a multiple of it), differential phase noise between adjacent lines of -82 dBc/Hz at 1-kHz offset (modulation source-limited), and a potential comb spectrum width of up to 2 THz (15 nm), though the comb spectrum was not continuous across the full span
- …