408 research outputs found

    Assessment of field rolling resistance of manual wheelchairs

    Get PDF
    This article proposes a simple and convenient method for assessing the subject-specific rolling resistance acting on a manual wheelchair, which could be used during the provision of clinical service. This method, based on a simple mathematical equation, is sensitive to both the total mass and its fore-aft distribution, which changes with the subject, wheelchair properties, and adjustments. The rolling resistance properties of three types of front casters and four types of rear wheels were determined for two indoor surfaces commonly encountered by wheelchair users (a hard smooth surface and carpet) from measurements of a three-dimensional accelerometer during field deceleration tests performed with artificial load. The average results provided by these experiments were then used as input data to assess the rolling resistance from the mathematical equation with an acceptable accuracy on hard smooth and carpet surfaces (standard errors of the estimates were 4.4 and 3.9 N, respectively). Thus, this method can be confidently used by clinicians to help users make trade-offs between front and rear wheel types and sizes when choosing and adjusting their manual wheelchair.This material was based on work supported by the SACR-FRM project, French National Research Agency (ANR-06-TecSan-020) and the Centre d’Etudeset de Recherche sur l’Appareillage des Handicapés (loaned all MWCs required to fulfill this work

    A graph-based approach for the structural analysis of road and building layouts

    Get PDF
    A better understanding of the relationship between the structure and functions of urban and suburban spaces is one of the avenues of research still open for geographical information science. The research presented in this paper develops several graph-based metrics whose objective is to characterize some local and global structural properties that reflect the way the overall building layout can be cross-related to the one of the road layout. Such structural properties are modeled as an aggregation of parcels, buildings, and road networks. We introduce several computational measures (Ratio Minimum Distance, Minimum Ratio Minimum Distance, and Metric Compactness) that respectively evaluate the capability for a given road to be connected with the whole road network. These measures reveal emerging sub-network structures and point out differences between less-connective and moreconnective parts of the network. Based on these local and global properties derived from the topological and graph-based representation, and on building density metrics, this paper proposes an analysis of road and building layouts at different levels of granularity. The metrics developed are applied to a case study in which the derived properties reveal coherent as well as incoherent neighborhoods that illustrate the potential of the approach and the way buildings and roads can be relatively connected in a given urban environment. Overall, and by integrating the parcels and buildings layouts, this approach complements other previous and related works that mainly retain the configurational structure of the urban network as well as morphological studies whose focus is generally limited to the analysis of the building layout

    Assessment of field rolling resistance of manual wheelchairs

    Get PDF
    This article proposes a simple and convenient method for assessing the subject-specific rolling resistance acting on a manual wheelchair, which could be used during the provision of clinical service. This method, based on a simple mathematical equation, is sensitive to both the total mass and its fore-aft distribution, which changes with the subject, wheelchair properties, and adjustments. The rolling resistance properties of three types of front casters and four types of rear wheels were determined for two indoor surfaces commonly encountered by wheelchair users (a hard smooth surface and carpet) from measurements of a three-dimensional accelerometer during field deceleration tests performed with artificial load. The average results provided by these experiments were then used as input data to assess the rolling resistance from the mathematical equation with an acceptable accuracy on hard smooth and carpet surfaces (standard errors of the estimates were 4.4 and 3.9 N, respectively). Thus, this method can be confidently used by clinicians to help users make trade-offs between front and rear wheel types and sizes when choosing and adjusting their manual wheelchair.International audienceThis article proposes a simple and convenient method for assessing the subject-specific rolling resistance acting on a manual wheelchair, which could be used during the provision of clinical service. This method, based on a simple mathematical equation, is sensitive to both the total mass and its fore-aft distribution, which changes with the subject, wheelchair properties, and adjustments. The rolling resistance properties of three types of front casters and four types of rear wheels were determined for two indoor surfaces commonly encountered by wheelchair users (a hard smooth surface and carpet) from measurements of a three-dimensional accelerometer during field deceleration tests performed with artificial load. The average results provided by these experiments were then used as input data to assess the rolling resistance from the mathematical equation with an acceptable accuracy on hard smooth and carpet surfaces (standard errors of the estimates were 4.4 and 3.9 N, respectively). Thus, this method can be confidently used by clinicians to help users make trade-offs between front and rear wheel types and sizes when choosing and adjusting their manual wheelchair

    Determinants of compliance with anti-vectorial protective measures among non-immune travellers during missions to tropical Africa

    Get PDF
    International audienceThe effectiveness of anti-vectorial malaria protective measures in travellers and expatriates is hampered by incorrect compliance. The objective of the present study was to identify the determinants of compliance with anti-vectorial protective measures (AVPMs) in this population that is particularly at risk because of their lack of immunity

    Metabolic, organoleptic and transcriptomic impact of saccharomyces cerevisiae genes involved in the biosynthesis of linear and substituted esters

    Get PDF
    Esters constitute a broad family of volatile compounds impacting the organoleptic properties of many beverages, including wine and beer. They can be classified according to their chemical structure. Higher alcohol acetates differ from fatty acid ethyl esters, whereas a third group, substituted ethyl esters, contributes to the fruitiness of red wines. Derived from yeast metabolism, the biosynthesis of higher alcohol acetates and fatty acid ethyl esters has been widely investigated at the enzymatic and genetic levels. As previously reported, two pairs of esterases, respectively encoded by the paralogue genes ATF1 and ATF2, and EEB1 and EHT1, are mostly involved in the biosynthesis of higher alcohol acetates and fatty acid ethyl esters. These esterases have a moderate effect on the biosynthesis of substituted ethyl esters, which depend on mono-acyl lipases encoded by MGL2 and YJU3. The functional characterization of such genes helps to improve our understanding of substituted ester metabolism in the context of wine alcohol fermentation. In order to evaluate the overall sensorial impact of esters, we attempted to produce young red wines without esters by generating a multiple esterase-free strain (Δatf1, Δatf2, Δeeb1, and Δeht1). Surprisingly, it was not possible to obtain the deletion of MGL2 in the Δatf1/Δatf2/Δeeb1/Δeht1 background, highlighting unsuspected genetic incompatibilities between ATF1 and MGL2. A preliminary RNA-seq analysis depicted the overall effect of the Δatf1/Δatf2/Δeeb1/Δeht1 genotype that triggers the expression shift of 1124 genes involved in nitrogen and lipid metabolism, but also chromatin organization and histone acetylation. These findings reveal unsuspected regulatory roles of ester metabolism in genome expression for the first time

    Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota

    Get PDF
    Objective The gut microbiota, which is considered a causal factor in metabolic diseases as shown best in animals, is under the dual influence of the host genome and nutritional environment. This study investigated whether the gut microbiota per se, aside from changes in genetic background and diet, could sign different metabolic phenotypes in mice. Methods The unique animal model of metabolic adaptation was used, whereby C57Bl/6 male mice fed a high-fat carbohydrate-free diet (HFD) became either diabetic (HFD diabetic, HFD-D) or resisted diabetes (HFD diabetes-resistant, HFD-DR). Pyrosequencing of the gut microbiota was carried out to profile the gut microbial community of different metabolic phenotypes. Inflammation, gut permeability, features of white adipose tissue, liver and skeletal muscle were studied. Furthermore, to modify the gut microbiota directly, an additional group of mice was given a glucooligosaccharide (GOS)-supplemented HFD (HFD+GOS). Results Despite the mice having the same genetic background and nutritional status, a gut microbial profile specific to each metabolic phenotype was identified. The HFD-D gut microbial profile was associated with increased gut permeability linked to increased endotoxaemia and to a dramatic increase in cell number in the stroma vascular fraction from visceral white adipose tissue. Most of the physiological characteristics of the HFD-fed mice were modulated when gut microbiota was intentionally modified by GOS dietary fibres. Conclusions The gut microbiota is a signature of the metabolic phenotypes independent of differences in host genetic background and diet

    Linking mechanochemistry with the green chemistry principles: review article

    Get PDF
    ABSTRACT: The need to explore contemporary alternatives for industrial production has driven the development of innovative techniques that address critical limitations linked to traditional batch mechanochemistry. One particularly promising strategy involves the integration of flow processes with mechanochemistry. Three noteworthy technologies in this domain are single-screw extrusion (SSE) and twin-screw extrusion (TSE) and Impact (Induction) in Continuous-flow Heated Mechanochemistry (ICHeM). These technologies go beyond the industrial production of polymers, extending to the synthesis of active pharmaceutical ingredients, the fabrication of (nano)materials, and the extraction of high-added value products through the valorisation of biomass and waste materials. In accordance with the principles of green chemistry, ball milling processes are generally considered greener compared to conventional solvothermal processes. In fact, ball milling processes require less solvent, enhance reaction rates and reaction conversion by increasing surface area and substituting thermal energy with mechanochemical energy, among others. Special attention will be given to the types of products, reactants, size of the milling balls and reaction conditions, selecting 60 articles after applying a screening methodology during the period 2020–2022. This paper aims to compile and analyze the cutting edge of research in utilizing mechanochemistry for green chemistry applications

    Weight of evidence evaluation of the metabolism disrupting effects of triphenyl phosphate using an expert knowledge elicitation approach

    Get PDF
    All partners acknowledge the contribution of their institutes for additional financial support. We would also like to acknowledge the scientific contributions from François Pouzaud, Sakina Mhaouty-Kodja and René Habert for the development of the EKE methodology within the frame of the Anses ED Expert group. Contributions from additional members of the GOLIATH consortium: Pierre-Etienne Toulemonde and Romane Multon from Anses are also acknowledged.Peer reviewe
    corecore