1,027 research outputs found
Single-Cell Enumeration of an Uncultivated TM7 Subgroup in the
Specific oligonucleotide hybridization conditions were established for single-cell enumeration of uncultivated TM7 and IO25 bacteria by using clones expressing heterologous 16S rRNA. In situ analysis of human subgingival crevice specimens revealed that a greater proportion of samples from sites of chronic periodontitis than from healthy sites contained TM7 subgroup IO25. In addition, IO25 bacterial cells from periodontitis site samples were more abundant and fourfold longer than IO25 cells from healthy site samples
Detection and identification of previously unrecognized microbial pathogens.
Features of a number of important but poorly explained human clinical syndromes strongly indicate a microbial etiology. In these syndromes, the failure of cultivation-dependent microbial detection methods reveals our ignorance of microbial growth requirements. Sequence-based molecular methods, however, offer alternative approaches for microbial identification directly from host specimens found in the setting of unexplained acute illnesses, chronic inflammatory disease, and from anatomic sites that contain commensal microflora. The rapid expansion of genome sequence databases and advances in biotechnology present opportunities and challenges: identification of consensus sequences from which reliable, specific phylogenetic information can be inferred for all taxonomic groups of pathogens, broad-range pathogen identification on the basis of virulence-associated gene families, and use of host gene expression response profiles as specific signatures of microbial infection
Using DNA microarrays to study host-microbe interactions.
Complete genomic sequences of microbial pathogens and hosts offer sophisticated new strategies for studying host-pathogen interactions. DNA microarrays exploit primary sequence data to measure transcript levels and detect sequence polymorphisms, for every gene, simultaneously. The design and construction of a DNA microarray for any given microbial genome are straightforward. By monitoring microbial gene expression, one can predict the functions of uncharacterized genes, probe the physiologic adaptations made under various environmental conditions, identify virulence-associated genes, and test the effects of drugs. Similarly, by using host gene microarrays, one can explore host response at the level of gene expression and provide a molecular description of the events that follow infection. Host profiling might also identify gene expression signatures unique for each pathogen, thus providing a novel tool for diagnosis, prognosis, and clinical management of infectious disease
Whipple's disease and Tropheryma whippelii: secrets slowly revealed.
This is the publisher’s copyrighted version of this article. The original can be found at
Prevalence of Bacteria of Division TM7 in Human Subgingival Plaque and Their Association with Disease
Members of the uncultivated bacterial division TM7 have been detected in the human mouth, but little information is available regarding their prevalence and diversity at this site. Human subgingival plaque samples from healthy sites and sites exhibiting various stages of periodontal disease were analyzed for the presence of TM7 bacteria. TM7 ribosomal DNA (rDNA) was found in 96% of the samples, and it accounted for approximately 0.3%, on average, of all bacterial rDNA in the samples as determined by real-time quantitative PCR. Two new phylotypes of this division were identified, and members of the division were found to exhibit filamentous morphology by fluorescence in situ hybridization. The abundance of TM7 rDNA relative to total bacterial rDNA was higher in sites with mild periodontitis (0.54% ± 0.1%) than in either healthy sites (0.21% ± 0.05%, P \u3c 0.01) or sites with severe periodontitis (0.29% ± 0.06%, P \u3c 0.05). One division subgroup, the I025 phylotype, was detected in 1 of 18 healthy samples and 38 of 58 disease samples. These data suggest that this phylotype, and the TM7 bacterial division in general, may play a role in the multifactorial process leading to periodontitis
Cross-talk in the gut
Modification of host signaling by the gut microbiota can influence weight gain and fat deposition
Modulation of the Host Interferon Response and ISGylation Pathway by B. pertussis Filamentous Hemagglutinin
Bordetella pertussis filamentous hemagglutinin (FHA) is a surface-associated and secreted protein that serves as a crucial adherence factor, and displays immunomodulatory activity in human peripheral blood mononuclear cells (PBMCs). In order to appreciate more fully the role of secreted FHA in pathogenesis, we analyzed FHA-induced changes in genome-wide transcript abundance in human PBMCs. Among the 683 known unique genes with greater than 3-fold change in transcript abundance following FHA treatment, 125 (18.3%) were identified as interferon (IFN)-regulated. Among the latter group were genes encoding several members of the IFN type I response, as well as 3 key components of the ISGylation pathway. Using real-time RT-PCR, we confirmed FHA-associated increases in transcript abundance for the genes encoding ubiquitin-like protein, ISG15, and its specific protease USP18. Western-blot analysis demonstrated the presence of both, free ISG15 and several ISGylated conjugates in FHA-stimulated PBMC lysates, but not in unstimulated cells. Intracellular FACS analysis provided evidence that monocytes and a natural killer-enriched cell population were the primary producers of ISG15 in PBMCs after FHA stimulation. Our data reveal previously-unrecognized effects of B. pertussis FHA on host IFN and ISGylation responses, and suggest previously-unsuspected mechanisms by which FHA may alter the outcome of the host-pathogen interaction
- …