105 research outputs found
Magnetic polarons in weakly doped high-Tc superconductors
We consider a spin Hamiltonian describing - exchange interactions
between localized spins of a finite antiferromagnet as well as -
interactions between a conducting hole () and localized spins. The spin
Hamiltonian is solved numerically with use of Lanczos method of
diagonalization. We conclude that - exchange interaction leads to
localization of magnetic polarons. Quantum fluctuations of the antiferromagnet
strengthen this effect and make the formation of polarons localized in one site
possible even for weak - coupling. Total energy calculations, including
the kinetic energy, do not change essentially the phase diagram of magnetic
polarons formation. For parameters reasonable for high- superconductors
either a polaron localized on one lattice cell or a small ferron can form. For
reasonable values of the dielectric function and - coupling, the
contributions of magnetic and phonon terms in the formation of a polaron in
weakly doped high- materials are comparable.Comment: revised, revtex-4, 12 pages 8 eps figure
Engineering Privacy in Public: Confounding Face Recognition
The objective of DARPA’s Human ID at a Distance (HID) program is to develop automated biometric identification technologies to detect, recognize and identify humans at great distances. While nominally intended for security applications, if deployed widely, such technologies could become an enormous privacy threat, making practical the automatic surveillance of individuals on a grand scale. Face recognition, as the HID technology most rapidly approaching maturity, deserves immediate research attention in order to understand its strengths and limitations, with an objective of reliably foiling it when it is used inappropriately. This paper is a status report for a research program designed to achieve this objective within a larger goal of similarly defeating all HID technologies
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Recent Developments in Helioseismic Analysis Methods and Solar Data Assimilation
MR and AS have received funding from the European Research Council under the European Union’s Seventh Framework Program (FP/2007-2013)/ERC Grant Agreement no. 307117
Identification of regulatory variants associated with genetic susceptibility to meningococcal disease
Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes
Plasma lipid profiles discriminate bacterial from viral infection in febrile children
Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection ar
Melatonin, a toll-like receptor inhibitor: Current status and future perspectives
Toll-like receptors (TLRs) are crucial activators of inflammatory responses, they are considered immune receptors. TLRs are of fundamental importance in the pathophysiology of disorders related to inflammation including neurodegenerative diseases and cancer. Melatonin is a beneficial agent in the treatment of inflammatory and immune disorders. Melatonin is potent anti-inflammatory hormone that regulates various molecular pathways. Withal, limited studies have evaluated the inhibitory role of melatonin on TLRs. This review summarizes the current knowledge related to the effects of melatonin on TLRs in some common inflammatory and immunity disorders. © 2018 Wiley Periodicals, Inc
Worst- and Average-Case Privacy Breaches in Randomization Mechanisms
International audienceIn a variety of contexts, randomization is regarded as an effective technique to conceal sensitive information. We model randomization mechanisms as information-theoretic channels. Our starting point is a semantic notion of security that expresses absence of any privacy breach above a given level of seriousness ε, irrespective of any background information, represented as a prior probability on the secret inputs. We first examine this notion according to two dimensions: worst vs. average case, single vs. repeated observations. In each case, we characterize the security level achievable by a mechanism in a simple fashion that only depends on the channel matrix, and specifically on certain measures of “distance” between its rows, like norm-1 distance and Chernoff Information. We next clarify the relation between our worst-case security notion and differential privacy (dp): we show that, while the former is in general stronger, the two coincide if one confines to background information that can be factorised into the product of independent priors over individuals. We finally turn our attention to expected utility, in the sense of Ghosh et al., in the case of repeated independent observations. We characterize the exponential growth rate of any reasonable utility function. In the particular case the mechanism provides ε-dp, we study the relation of the utility rate with ε: we offer either exact expressions or upper-bounds for utility rate that apply to practically interesting cases, such as the (truncated) geometric mechanism
- …