34,406 research outputs found

    “Constructal Theory: From Engineering to Physics, and How Flow Systems Develop Shape and Structure”

    Get PDF
    Constructal theory and its applications to various fields ranging from engineering to natural living and inanimate systems, and to social organization and economics, are reviewed in this paper. The constructal law states that if a system has freedom to morph it develops in time the flow architecture that provides easier access to the currents that flow through it. It is shown how constructal theory provides a unifying picture for the development of flow architectures in systems with internal flows (e.g., mass, heat, electricity, goods, and people). Early and recent works on constructal theory by various authors covering the fields of heat and mass transfer in engineered systems, inanimate flow structures (river basins, global circulations) living structures, social organization, and economics are reviewed. The relation between the constructal law and the thermodynamic optimization method of entropy generation minimization is outlined. The constructal law is a self-standing principle, which is distinct from the Second Law of Thermodynamics. The place of the constructal law among other fundamental principles, such as the Second Law, the principle of least action and the principles of symmetry and invariance is also presented. The review ends with the epistemological and philosophical implications of the constructal law

    “Exergy based analysis of economic sustainability”

    Get PDF
    Exergy is presented here as the physical prime-mover of economic systems, and an exergy based concept of value is proposed in this paper. The main exergy fluxes are identified as those carried by raw exergy (primary sources), raw materials, usable exergy and exergy embodied in manufactured commodities. It is shown how efficiency of exergy use is the physical basis for competitiveness and how exergy content (value)can be assigned to skillfulness and expertise. Sustainability of economic systems is analyzed in the light of competitiveness and ability to take extra exergy taken from markets. It is also shown that in competitive economies the ratio (raw exergy)/(total value) tends to decrease, therefore indicating extra exergy from the markets, and this trend is illustrated with the case of the US economy. Finally, the average electricity price in the markets was proposed as a provisional correspondence between exergy content and price of commodities

    Constructal view of scaling laws of river basins

    Get PDF
    River basins are examples of naturally organized flow architectures whose scaling properties have been noticed long ago. Based on data of geometric characteristics, Horton [Horton, R.E., 1932. Drainage basin characteristics. EOS Trans. AGU 13, 350–361.], Hack [Hack, J.T., 1957. Studies of longitudinal profiles in Virginia and Maryland. USGS Professional Papers 294-B, Washington DC, pp. 46–97.], and Melton [Melton, M.A, 1958. Correlation structure of morphometric properties of drainage systems and their controlling agents. J. of Geology 66, 35–56.] proposed scaling laws that are considered to describe rather accurately the actual river basins. What we show here is that these scaling laws can be anticipated based on Constructal Theory, which views the pathways by which drainage networks develop in a basin not as the result of chance but as flow architectures that originate naturally as the result of minimization of the overall resistance to flow (Constructal Law)

    and Development, from the Individual Researcher to research Empires

    Get PDF
    This paper is dated: it was written at the time of the celebration of the 20 years of activity of the Évora Geophysics Centre (CGE). It comprises a brief appraisal of the evolution of scientific research in Europe and in the United States of America, together with a special reference to the development of the Portuguese scientific system. The size distribution of scientific teams in the whole system is addressed, and it is shown that at a state of optimal performance there is room for all team sizes ranging from the individual investigator to research empires. Similarly, we note that research dynamics evolve in time with periods of strong creation intensity that alternate with periods of extension and quiescence. We also note that the new perspectives for the European Research Area, with policies that push strongly to the development side, may be risky in the long term as they might lessen creation, which is the base for sustainability and development. Finally, we briefly address the challenges ahead both for the Portuguese scientific system and the CGE

    Natural flow patterns and structured people dynamics: a constructal view

    Get PDF
    Constructal theory that has been successfully applied to planetary circulations and climate and to river basin morphology is shown to provide a useful framework for describing flows of people. We showed here, with simple examples, that intuitive rules of traffic organization can be anticipated based on principle, i.e., based on the Constructal Law. In addition, and similarly to the case of flows of inanimate matter, in the case of flows of people, flow patterns emerge as a necessary consequence of reduction of global flow resistances. These flow patterns point to decreasing resistivity to flows of people and commodities. Pathway length varies inversely with resistivity while pathway number increases with resistivity

    Constructal view of the scaling laws of street networks — the dynamics behind geometry

    Get PDF
    The distributions of street lengths and nodes follow inverse-power distribution laws. That means that the smaller the network components, the more numerous they have to be. In addition, street networks show geometrical self-similarities over a range of scales. Based on these features many authors claim that street networks are fractal in nature. What we show here is that both the scaling laws and self-similarity emerge from the underlying dynamics, together with the purpose of optimizing flows of people and goods in time, as predicted by the Constructal Law. The results seem to corroborate the prediction that cities’ fractal dimension approaches 2 as they develop and become more complex

    Constructal theory of global circulation and climate

    Get PDF
    The constructal law states that every flow system evolves in time so that it develops the flow architecture that maximizes flow access under the constraints posed to the flow. Earlier applications of the constructal law recommended it as a self-standing law that is distinct from the second law of thermodynamics. In this paper, we develop a model of heat transport on the earth surface that accounts for the solar and terrestrial radiation as the heat source and heat sink and with natural convection loops as the transport mechanism. In the first part of the paper, the constructal law is invoked to optimize the latitude of the boundary between the Hadley and the Ferrel cells, and the boundary between the Ferrel and the Polar cells. The average temperature of the earth surface, the convective conductance in the horizontal direction as well as other parameters defining the latitudinal circulation also match the observed values. In the second part of the paper, the constructal law is invoked in the analysis of atmospheric circulation at the diurnal scale. Here the heat transport is optimized against the Ekman number. Even though this second optimization is based on very different variables than in the first part of the paper, it produces practically the same results for the earth surface temperature and the other variables. The earth averaged temperature difference between day and night was found to be approximately 7 K, which matches the observed value. The accumulation of coincidences between theoretical predictions and natural flow configuration adds weight to the claim that the constructal law is a law of nature

    Thermodynamic optimization of global circulation and climate

    Get PDF
    The constructal law of generation of flow structure is used to predict the main features of global circulation and climate. The flow structure is the atmospheric and oceanic circulation. This feature is modelled as convection loops, and added to the earth model as a heat engine heated by the Sun and cooled by the background. It is shown that the dissipation of the power produced by the earth engine can be maximized by selecting the proper balance between the hot and cold zones of the Earth, and by optimizing the thermal conductance of the circulation loops. The optimized features agree with the main characteristics of global circulation and climate. The robustness of these predictions, and the place of the constructal law as a selfstanding principle in thermodynamics, are discussed

    The changing energy paradigm, challenges, and new developments

    Get PDF
    Editorial of the Special Issue of the International Journal of Energy Researc

    “Recent Advances in Energy Research”

    Get PDF
    The worldwide scarcity of fossil fuels regarding primary energy demand together with growing environmental concerns have raised new challenges to the world economy, and led to changes in the energy paradigm. Industry, services, researchers, and the Academy are challenged to envisage new solutions through setting up new conversion processes, designing new power systems, and investigating and developing new energy sources and vectors
    corecore