2,909 research outputs found
Low-Energy Scale Excitations in the Spectral Function of Organic Monolayer Systems
Using high-resolution photoemission spectroscopy we demonstrate that the
electronic structure of several organic monolayer systems, in particular
1,4,5,8-naphthalene tetracarboxylic dianhydride and Copper-phtalocyanine on
Ag(111), is characterized by a peculiar excitation feature right at the Fermi
level. This feature displays a strong temperature dependence and is immediatly
connected to the binding energy of the molecular states, determined by the
coupling between the molecule and the substrate. At low temperatures, the
line-width of this feature, appearing on top of the partly occupied lowest
unoccupied molecular orbital of the free molecule, amounts to only
meV, representing an unusually small energy scale for electronic excitations in
these systems. We discuss possible origins, related e.g. to many-body
excitations in the organic-metal adsorbate system, in particular a generalized
Kondo scenario based on the single impurity Anderson model.Comment: 6 pages, 3 figures, accepted as PRB Rapid Communication
Core hole-electron correlation in coherently coupled molecules
We study the core hole-electron correlation in coherently coupled molecules
by energy dispersive near edge X-ray absorption fine-structure spectroscopy. In
a transient phase, which exists during the transition between two bulk
arrangements, 1,4,5,8-naphthalene-tetracarboxylicacid-dianhydride multilayer
films exhibit peculiar changes of the line shape and energy position of the
X-ray absorption signal at the C K-edge with respect to the bulk and gas phase
spectra. By a comparison to a theoretical model based on a coupling of
transition dipoles, which is established for optical absorption, we demonstrate
that the observed spectroscopic differences can be explained by an
intermolecular delocalized core hole-electron pair. By applying this model we
can furthermore quantify the coherence length of the delocalized core-exciton.Comment: 5 pages, 3 figures, Accepted Version, PRL, minor wording change
High iron and iron household protein contents in perineuronal net-ensheathed neurons ensure energy metabolism with safe iron handling
A subpopulation of neurons is less vulnerable against iron-induced oxidative stress and neurodegeneration. A key feature of these neurons is a special extracellular matrix composition that forms a perineuronal net (PN). The PN has a high affinity to iron, which suggests an adapted iron sequestration and metabolism of the ensheathed neurons. Highly active, fast-firing neurons—which are often ensheathed by a PN—have a particular high metabolic demand, and therefore may have a higher need in iron. We hypothesize that PN-ensheathed neurons have a higher intracellular iron concentration and increased levels of iron proteins. Thus, analyses of cellular and regional iron and the iron proteins transferrin (Tf), Tf receptor 1 (TfR), ferritin H/L (FtH/FtL), metal transport protein 1 (MTP1 aka ferroportin), and divalent metal transporter 1 (DMT1) were performed on Wistar rats in the parietal cortex (PC), subiculum (SUB), red nucleus (RN), and substantia nigra (SNpr/SNpc). Neurons with a PN (PN+) have higher iron concentrations than neurons without a PN: PC 0.69 mM vs. 0.51 mM, SUB 0.84 mM vs. 0.69 mM, SN 0.71 mM vs. 0.63 mM (SNpr)/0.45 mM (SNpc). Intracellular Tf, TfR and MTP1 contents of PN+ neurons were consistently increased. The iron concentration of the PN itself is not increased. We also determined the percentage of PN+ neurons: PC 4%, SUB 5%, SNpr 45%, RN 86%. We conclude that PN+ neurons constitute a subpopulation of resilient pacemaker neurons characterized by a bustling iron metabolism and outstanding iron handling capabilities. These properties could contribute to the low vulnerability of PN+ neurons against iron-induced oxidative stress and degeneration
Iron concentrations in neurons and glial cells with estimates on ferritin concentrations
BACKGROUND: Brain iron is an essential as well as a toxic redox active element. Physiological levels are not uniform among the different cell types. Besides the availability of quantitative methods, the knowledge about the brain iron lags behind. Thereby, disclosing the mechanisms of brain iron homeostasis helps to understand pathological iron-accumulations in diseased and aged brains. With our study we want to contribute closing the gap by providing quantitative data on the concentration and distribution of iron in neurons and glial cells in situ. Using a nuclear microprobe and scanning proton induced X-ray emission spectrometry we performed quantitative elemental imaging on rat brain sections to analyze the iron concentrations of neurons and glial cells. RESULTS: Neurons were analyzed in the neocortex, subiculum, substantia nigra and deep cerebellar nuclei revealing an iron level between [Formula: see text] and [Formula: see text]. The iron concentration of neocortical oligodendrocytes is fivefold higher, of microglia threefold higher and of astrocytes twofold higher compared to neurons. We also analyzed the distribution of subcellular iron concentrations in the cytoplasm, nucleus and nucleolus of neurons. The cytoplasm contains on average 73 of the total iron, the nucleolus-although a hot spot for iron-due to its small volume only 6 of total iron. Additionally, the iron level in subcellular fractions were measured revealing that the microsome fraction, which usually contains holo-ferritin, has the highest iron content. We also present an estimate of the cellular ferritin concentration calculating [Formula: see text] ferritin molecules per [Formula: see text] in rat neurons. CONCLUSION: Glial cells are the most iron-rich cells in the brain. Imbalances in iron homeostasis that lead to neurodegeneration may not only be originate from neurons but also from glial cells. It is feasible to estimate the ferritin concentration based on measured iron concentrations and a reasonable assumptions on iron load in the brain
Efficient method for estimating the number of communities in a network
While there exist a wide range of effective methods for community detection
in networks, most of them require one to know in advance how many communities
one is looking for. Here we present a method for estimating the number of
communities in a network using a combination of Bayesian inference with a novel
prior and an efficient Monte Carlo sampling scheme. We test the method
extensively on both real and computer-generated networks, showing that it
performs accurately and consistently, even in cases where groups are widely
varying in size or structure.Comment: 13 pages, 4 figure
The upper-atmosphere extension of the ICON general circulation model (version: Ua-icon-1.0)
How the upper-atmosphere branch of the circulation contributes to and interacts with the circulation of the middle and lower atmosphere is a research area with many open questions. Inertia-gravity waves, for instance, have moved in the focus of research as they are suspected to be key features in driving and shaping the circulation. Numerical atmospheric models are an important pillar for this research. We use the ICOsahedral Non-hydrostatic (ICON) general circulation model, which is a joint development of the Max Planck Institute for Meteorology (MPI-M) and the German Weather Service (DWD), and provides, e.g., local mass conservation, a flexible grid nesting option, and a non-hydrostatic dynamical core formulated on an icosahedral-triangular grid. We extended ICON to the upper atmosphere and present here the two main components of this new configuration named UA-ICON: an extension of the dynamical core from shallow- to deep-atmosphere dynamics and the implementation of an upper-atmosphere physics package. A series of idealized test cases and climatological simulations is performed in order to evaluate the upper-atmosphere extension of ICON. © Author(s) 2019
The practical use of the A* algorithm for exact multiple sequence alignment
Multiple alignment is an important problem in computational biology. It is well known that it can be solved exactly by a dynamic programming algorithm which in turn can be interpreted as a shortest path computation in a directed acyclic graph. The algorithm (or goal directed unidirectional search) is a technique that speeds up the computation of a shortest path by transforming the edge lengths without losing the optimality of the shortest path. We implemented the algorithm in a computer program similar to MSA~\cite{GupKecSch95} and FMA~\cite{ShiIma97}. We incorporated in this program new bounding strategies for both, lower and upper bounds and show that the algorithm, together with our improvements, can speed up comput ations considerably. Additionally we show that the algorithm together with a standard bounding technique is superior to the well known Carillo-Lipman bounding since it excludes more nodes from consideration
Echo of the Quantum Phase Transition of CeCuAu in XPS: Breakdown of Kondo Screening
We present an X-ray photoemission study of the heavy-fermion system
CeCuAu across the magnetic quantum phase transition of this
compound at temperatures above the single-ion Kondo temperature . In
dependence of the Au concentration we observe a sudden change of the
-occupation number and the core-hole potential at the
critical concentration . We interpret these findings in the framework
of the single-impurity Anderson model. Our results are in excellent agreement
with findings from earlier UPS measurements %\cite{klein08qpt} and provide
further information about the precursors of quantum criticality at elevated
temperatures.Comment: 5 pages, 3 figures; published version, references updated, minor
changes in wordin
High-temperature signatures of quantum criticality in heavy fermion systems
We propose a new criterion for distinguishing the Hertz-Millis (HM) and the
local quantum critical (LQC) mechanism in heavy fermion systems with a magnetic
quantum phase transition (QPT). The criterion is based on our finding that the
spin screening of Kondo ions can be completely suppressed by the RKKY coupling
to the surrounding magnetic ions even without magnetic ordering and that,
consequently, the signature of this suppression can be observed in
spectroscopic measurements above the magnetic ordering temperature. We apply
the criterion to high-resolution photoemission (UPS) measurements on
CeCuAu and conclude that the QPT in this system is dominated by
the LQC scenario.Comment: Inveted paper, International Conference on Magnetism, ICM 2009,
Karlsruhe. Published version, added discussions of the relevance of
Fermi-surface fluctuations and of a structural transition near the QC
- …