6,148 research outputs found

    The Imperative for Nuclear Responsibility: Facing the Weapons Legacy in School

    Get PDF
    Nuclear industry\u27s pro-uranium mining campaign in Saskatchewan public schools

    Free Magnetic Energy in Solar Active Regions above the Minimum-Energy Relaxed State

    Get PDF
    To understand the physics of solar flares, including the local reorganization of the magnetic field and the acceleration of energetic particles, we have first to estimate the free magnetic energy available for such phenomena, which can be converted into kinetic and thermal energy. The free magnetic energy is the excess energy of a magnetic configuration compared to the minimum-energy state, which is a linear force-free field if the magnetic helicity of the configuration is conserved. We investigate the values of the free magnetic energy estimated from either the excess energy in extrapolated fields or the magnetic virial theorem. For four different active regions, we have reconstructed the nonlinear force-free field and the linear force-free field corresponding to the minimum-energy state. The free magnetic energies are then computed. From the energy budget and the observed magnetic activity in the active region, we conclude that the free energy above the minimum-energy state gives a better estimate and more insights into the flare process than the free energy above the potential field state

    3D magnetic configuration of the Halpha filament and X-ray sigmoid in NOAA AR 8151

    Get PDF
    We investigate the structure and relationship of an H α\alpha filament and an X-ray sigmoid observed in active region NOAA 8151. We first examine the presence of such structures in the reconstructed 3D coronal magnetic field obtained from the non-constant- α\alpha force-free field hypothesis using a photospheric vector magnetogram (IVM, Mees Solar Observatory). This method allows us to identify several flux systems: a filament (height 30 Mm, aligned with the polarity inversion line (PIL), magnetic field strength at the apex 49 G, number of turns 0.5-0.6), a sigmoid (height 45 Mm, aligned with the PIL, magnetic field strength at the apex 56 G, number of turns 0.5-0.6) and a highly twisted flux tube (height 60 Mm, magnetic field strength at the apex 36 G, number of turns 1.1-1.2). By searching for magnetic dips in the configuration, we identify a filament structure which is in good agreement with the H α\alpha observations. We find that both filament and sigmoidal structures can be described by a long twisted flux tube with a number of turns less than 1 which means that these structures are stable against kinking. The filament and the sigmoid have similar absolute values of α\alpha and Jz in the photosphere. However, the electric current density is positive in the filament and negative in the sigmoid: the filament is right-handed whereas the sigmoid is left-handed. This fact can explain the discrepancies between the handedness of magnetic clouds (twisted flux tubes ejected from the Sun) and the handedness of their solar progenitors (twisted flux bundles in the low corona). The mechanism of eruption in AR 8151 is more likely not related to the development of instability in the filament and/or the sigmoid but is associated with the existence of the highly twisted flux tube (~1.1-1.2 turns)

    Evolution of magnetic fields and energetics of flares in active region 8210

    Get PDF
    To better understand eruptive events in the solar corona, we combine sequences of multi-wavelength observations and modelling of the coronal magnetic field of NOAA AR 8210, a highly flare-productive active region. From the photosphere to the corona, the observations give us information about the motion of magnetic elements (photospheric magnetograms), the location of flares (e.g., Hα\alpha, EUV or soft X-ray brightenings), and the type of events (Hα\alpha blueshift events). Assuming that the evolution of the coronal magnetic field above an active region can be described by successive equilibria, we follow in time the magnetic changes of the 3D nonlinear force-free (nlff) fields reconstructed from a time series of photospheric vector magnetograms. We apply this method to AR 8210 observed on May 1, 1998 between 17:00 UT and 21:40 UT. We identify two types of horizontal photospheric motions that can drive an eruption: a clockwise rotation of the sunspot, and a fast motion of an emerging polarity. The reconstructed nlff coronal fields give us a scenario of the confined flares observed in AR 8210: the slow sunspot rotation enables the occurence of flare by a reconnection process close to a separatrix surface whereas the fast motion is associated with small-scale reconnections but no detectable flaring activity. We also study the injection rates of magnetic energy, Poynting flux and relative magnetic helicity through the photosphere and into the corona. The injection of magnetic energy by transverse photospheric motions is found to be correlated with the storage of energy in the corona and then the release by flaring activity. The magnetic helicity derived from the magnetic field and the vector potential of the nlff configuration is computed in the coronal volume. The magnetic helicity evolution shows that AR 8210 is dominated by the mutual helicity between the closed and potential fields and not by the self helicity of the closed field which characterizes the twist of confined flux bundles. We conclude that for AR 8210 the complex topology is a more important factor than the twist in the eruption process
    corecore