7,715 research outputs found

    Dynamic black holes through gravitational collapse: Analysis of multipole moment of the curvatures on the horizon

    Full text link
    We have investigated several properties of rapidly rotating dynamic black holes generated by gravitational collapse of rotating relativistic stars. At present, numerical simulations of the binary black hole merger are able to produce a Kerr black hole of J_final / M_final^2 up to = 0.91, of gravitational collapse from uniformly rotating stars up to J_final / M_final^2 ~ 0.75, where J_final is the total angular momentum and M_final the total gravitational mass of the hole. We have succeeded in producing a dynamic black hole of spin J_final / M_final^2 ~ 0.95 through the collapse of differentially rotating relativistic stars. We have investigated those dynamic properties through diagnosing multipole moment of the horizon, and found the following two features. Firstly, two different definitions of the angular momentum of the hole, the approximated Killing vector approach and dipole moment of the current multipole approach, make no significant difference to our computational results. Secondly, dynamic hole approaches a Kerr by gravitational radiation within the order of a rotational period of an equilibrium star, although the dynamic hole at the very forming stage deviates quite far from a Kerr. We have also discussed a new phase of quasi-periodic waves in the gravitational waveform after the ringdown in terms of multipole moment of the dynamic hole.Comment: 13 pages with 19 figures, revtex4-1.cls. Accepted for publication in the Physical Review

    A global picture of quantum de Sitter space

    Full text link
    Perturbative gravity about a de Sitter background motivates a global picture of quantum dynamics in `eternal de Sitter space,' the theory of states which are asymptotically de Sitter to both future and past. Eternal de Sitter physics is described by a finite dimensional Hilbert space in which each state is precisely invariant under the full de Sitter group. This resolves a previously-noted tension between de Sitter symmetry and finite entropy. Observables, implications for Boltzmann brains, and Poincare recurrences are briefly discussed.Comment: 17 pages, 1 figure. v2: minor changes, references added. v3: minor changes to correspond to PRD versio

    Anthropic reasoning in multiverse cosmology and string theory

    Get PDF
    Anthropic arguments in multiverse cosmology and string theory rely on the weak anthropic principle (WAP). We show that the principle, though ultimately a tautology, is nevertheless ambiguous. It can be reformulated in one of two unambiguous ways, which we refer to as WAP_1 and WAP_2. We show that WAP_2, the version most commonly used in anthropic reasoning, makes no physical predictions unless supplemented by a further assumption of "typicality", and we argue that this assumption is both misguided and unjustified. WAP_1, however, requires no such supplementation; it directly implies that any theory that assigns a non-zero probability to our universe predicts that we will observe our universe with probability one. We argue, therefore, that WAP_1 is preferable, and note that it has the benefit of avoiding the inductive overreach characteristic of much anthropic reasoning.Comment: 7 pages. Expanded discussion of selection effects and some minor clarifications, as publishe

    X-ray Polarization Signatures of Compton Scattering in Magnetic Cataclysmic Variables

    Full text link
    Compton scattering within the accretion column of magnetic cataclysmic variables (mCVs) can induce a net polarization in the X-ray emission. We investigate this process using Monte Carlo simulations and find that significant polarization can arise as a result of the stratified flow structure in the shock-ionized column. We find that the degree of linear polarization can reach levels up to ~8% for systems with high accretion rates and low white-dwarf masses, when viewed at large inclination angles with respect to the accretion column axis. These levels are substantially higher than previously predicted estimates using an accretion column model with uniform density and temperature. We also find that for systems with a relatively low-mass white dwarf accreting at a high accretion rate, the polarization properties may be insensitive to the magnetic field, since most of the scattering occurs at the base of the accretion column where the density structure is determined mainly by bremsstrahlung cooling instead of cyclotron cooling.Comment: 7 pages, 8 figures, accepted by MNRA

    Oxygen Limitation and Tissue Metabolic Potential of the African Fish Barbus neumayeri: Roles of Native Habitat and Acclimatization

    Get PDF
    Background: Oxygen availability in aquatic habitats is a major environmental factor influencing the ecology, behaviour, and physiology of fishes. This study evaluates the contribution of source population and hypoxic acclimatization of the African fish, Barbus neumayeri, in determining growth and tissue metabolic enzyme activities. Individuals were collected from two sites differing dramatically in concentration of dissolved oxygen (DO), Rwembaita Swamp (annual average DO 1.35 mgO2 L-1) and Inlet Stream West (annual average DO 5.58 mgO2 L-1) in Kibale National Park, Uganda, and reciprocally transplanted using a cage experiment in the field, allowing us to maintain individuals under natural conditions of oxygen, food availability, and flow. Fish were maintained under these conditions for four weeks and sampled for growth rate and the activities of phosphofructokinase (PFK), lactate dehydrogenase (LDH), citrate synthase (CS), and cytochrome c oxidase (CCO) in four tissues, liver, heart, brain, and skeletal muscle. Results: Acclimatization to the low DO site resulted in lower growth rates, lower activities of the aerobic enzyme CCO in heart, and higher activities of the glycolytic enzyme PFK in heart and skeletal muscle. The activity of LDH in liver tissue was correlated with site of origin, being higher in fish collected from a hypoxic habitat, regardless of acclimatization treatment. Conclusions: Our results suggest that the influence of site of origin and hypoxic acclimatization in determining enzyme activity differs among enzymes and tissues, but both factors contribute to higher glycolytic capacity and lower aerobic capacity in B. neumayeri under naturally-occurring conditions of oxygen limitation

    Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands

    Get PDF
    Acknowledgements This work contributes to the N-Circle project (grant number BB/N013484/1), and CINAg (BB/N013468/1) Virtual Joint Centres on Agricultural Nitrogen (funded by the Newton Fund via UK BBSRC/NERC), U-GRASS (grant number NE/M016900/1), the Belmont Forum/FACCE-JPI DEVIL project (grant number NE/M021327/1), Soils-R-GGREAT (grant number NE/P019455/1), ADVENT (grant number NE/M019713/1), Sêr Cymru LCEE-NRN project, Climate-Smart Grass and the Scottish Government’s Strategic Research Programme.Peer reviewedPublisher PD

    The Association Between Smartphone Addiction and Sleep: A UK Cross-Sectional Study of Young Adults

    Get PDF
    Background: In a large UK study we investigated the relationship between smartphone addiction and sleep quality in a young adult population. Methods: We undertook a large UK cross-sectional observational study of 1,043 participants aged 18 to 30 between January 21st and February 30th 2019. Participants completed the Smartphone Addiction Scale Short Version, an adapted Pittsburgh Sleep Quality Score Index and reported smartphone use reduction strategies using both in-person (n = 968) and online (n = 75) questionnaires. A crude and adjusted logistic regression was fitted to assess risk factors for smartphone addiction, and the association between smartphone addiction and poor sleep. Results: One thousand seventy one questionnaires were returned, of which 1,043 participants were included, with median age 21.1 [interquartile range (IQR) 19–22]. Seven hundred and sixty three (73.2%) were female, and 406 reported smartphone addiction (38.9%). A large proportion of participants disclosed poor sleep (61.6%), and in those with smartphone addiction, 68.7% had poor sleep quality, compared to 57.1% of those without. Smartphone addiction was associated with poor sleep (aOR = 1.41, 95%CI: 1.06–1.87, p = 0.018). Conclusions: Using a validated instrument, 39% young adults reported smartphone addiction. Smartphone addiction was associated with poor sleep, independent of duration of usage, indicating that length of time should not be used as a proxy for harmful usage

    Temporal properties of the short gamma-ray bursts

    Get PDF
    A temporal analysis has been performed on a sample of 100 bright gamma-ray bursts (GRBs) with T90<2s from the BATSE current catalog. The GRBs were denoised using a median filter and subjected to an automated pulse selection algorithm as an objective way of idenitifing the effects of neighbouring pulses. The rise times, fall times, FWHM, pulse amplitudes and areas were measured and the frequency distributions are presented here. All are consistent with lognormal distributions. The distribution of the time intervals between pulses is not random but consistent with a lognormal distribution. The time intervals between pulses and pulse amplitudes are highly correlated with each other. These results are in excellent agreement with a similar analysis that revealed lognormal distributions for pulse properties and correlated time intervals between pulses in bright GRBs with T90>2s. The two sub-classes of GRBs appear to have the same emission mechanism which is probably caused by internal shocks. They may not have the same progenitors because of the generic nature of the fireball model.Comment: 4 pages, 7 figure

    Radiative Shock-Induced Collapse of Intergalactic Clouds

    Full text link
    Accumulating observational evidence for a number of radio galaxies suggests an association between their jets and regions of active star formation. The standard picture is that shocks generated by the jet propagate through an inhomogeneous medium and trigger the collapse of overdense clouds, which then become active star-forming regions. In this contribution, we report on recent hydrodynamic simulations of radiative shock-cloud interactions using two different cooling models: an equilibrium cooling-curve model assuming solar metallicities and a non-equilibrium chemistry model appropriate for primordial gas clouds. We consider a range of initial cloud densities and shock speeds in order to quantify the role of cooling in the evolution. Our results indicate that for moderate cloud densities (>1 cm^{-3}) and shock Mach numbers (<20), cooling processes can be highly efficient and result in more than 50% of the initial cloud mass cooling to below 100 K. We also use our results to estimate the final H_2 mass fraction for the simulations that use the non-equilibrium chemistry package. This is an important measurement, since H_2 is the dominant coolant for a primordial gas cloud. We find peak H_2 mass fractions of >0.01 and total H_2 mass fractions of >10^{-5} for the cloud gas. Finally, we compare our results with the observations of jet-induced star formation in ``Minkowski's Object.'' We conclude that its morphology, star formation rate (~ 0.3M_solar/yr) and stellar mass (~ 1.2 x 10^7 M_solar) can be explained by the interaction of a 90,000 km/s jet with an ensemble of moderately dense (~ 10 cm^{-3}), warm (10^4 K) intergalactic clouds in the vicinity of its associated radio galaxy at the center of the galaxy cluster.Comment: 30 pages, 7 figures, submitted to Astrophysical Journa

    Gedanken Worlds without Higgs: QCD-Induced Electroweak Symmetry Breaking

    Full text link
    To illuminate how electroweak symmetry breaking shapes the physical world, we investigate toy models in which no Higgs fields or other constructs are introduced to induce spontaneous symmetry breaking. Two models incorporate the standard SU(3)_c x SU(2)_L x U(1)_Y gauge symmetry and fermion content similar to that of the standard model. The first class--like the standard electroweak theory--contains no bare mass terms, so the spontaneous breaking of chiral symmetry within quantum chromodynamics is the only source of electroweak symmetry breaking. The second class adds bare fermion masses sufficiently small that QCD remains the dominant source of electroweak symmetry breaking and the model can serve as a well-behaved low-energy effective field theory to energies somewhat above the hadronic scale. A third class of models is based on the left-right--symmetric SU(3)_c x SU(2)_L x SU(2)_R x U(1)_{B-L} gauge group. In a fourth class of models, built on SU(4)_{PS} x SU(2)_L x SU(2)_R gauge symmetry, lepton number is treated as a fourth color. Many interesting characteristics of the models stem from the fact that the effective strength of the weak interactions is much closer to that of the residual strong interactions than in the real world. The Higgs-free models not only provide informative contrasts to the real world, but also lead us to consider intriguing issues in the application of field theory to the real world.Comment: 20 pages, no figures, uses RevTeX; typos correcte
    corecore