233 research outputs found
Abundance and movements of caribou in the oilfield complex near Prudhoe Bay, Alaska
We examined the distribution and movements of 141 radiocollared female caribou (Rangifer tarandus granti) of the Central Arctic Herd during summer, 1980-1993. Numbers of caribou locations within each of 5 quadrats along the arctic coast were totalled separately for days during which insects were active and inactive, and numbers of east-west and west-east crossings of each quadrat mid-line were determined from sequential observations. Both abundance and lateral movements of radiocollared females in the quadrat encompassing the intensively-developed Prudhoe Bay oilfield complex were significantly lower than in other quadrats (P < 0.001 and P < 0.00001, respectively). Avoidance of, and fewer movements within, the complex by female caribou are ostensibly in response to the dense network of production and support facilities, roads, above-ground pipelines, and the associated vehicular and human activity. Impaired access to this area constitutes a functional loss of habitat
Recommended from our members
Repetitive high energy pulsed power technology development for industrial applications
The technology base for Repetitive High Energy Pulsed Power (RHEPP) was originally developed to support defense program applications. As RHEPP technology matures, its potential for use in commercial applications can be explored based on inherent strengths of high average power, high dose rate, cost efficient scaling with power, and potential for long life performance. The 300 kW, 2 MeV RHEPP II accelerator is now in operation as a designated DOE User Facility, exploring applications where high dose-rate (> 10{sup 8} Gy/s) may be advantageous, or very high average power is needed to meet throughput requirements. Material surface and bulk property modification, food safety, and large-scale timber disinfestation are applications presently under development. Work is also in progress to generate the reliability database required for the design of 2nd generation systems
Current-Induced Effects in Nanoscale Conductors
We present an overview of current-induced effects in nanoscale conductors
with emphasis on their description at the atomic level. In particular, we
discuss steady-state current fluctuations, current-induced forces, inelastic
scattering and local heating. All of these properties are calculated in terms
of single-particle wavefunctions computed using a scattering approach within
the static density-functional theory of many-electron systems. Examples of
current-induced effects in atomic and molecular wires will be given and
comparison with experimental results will be provided when available.Comment: revtex, 10 pages, 8 figure
Influence of Grain Boundary Character on Creep Void Formation in Alloy 617
Alloy 617, a high temperature creep-resistant, nickel-based alloy, is being considered for the primary heat exchanger for the Next Generation Nuclear Plant (NGNP) which will operate at temperatures exceeding 760oC. Orientation imaging microscopy (OIM) is used to characterize the grain boundaries in the vicinity of creep voids that develop during high temperature creep tests (800-1000oC at creep stresses ranging from 20-85 MPa) terminated at creep strains ranging from 5-40%. Observations using optical microscopy indicate creep rate does not significantly influence the creep void fraction at a given creep strain. Preliminary analysis of the OIM data indicates voids tend to form on grain boundaries parallel, perpendicular or 45o to the tensile axis, while few voids are found at intermediate inclinations to the tensile axis. Random grain boundaries intersect most voids while CSL-related grain boundaries did not appear to be consistently associated with void development
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
- …