7 research outputs found

    Species Interactions during Diversification and Community Assembly in an Island Radiation of Shrews

    Get PDF
    Closely related, ecologically similar species often have adjacent distributions, suggesting competitive exclusion may contribute to the structure of some natural communities. In systems such as island archipelagos, where speciation is often tightly associated with dispersal over oceanic barriers, competitive exclusion may prevent population establishment following inter-island dispersal and subsequent cladogenesis.) species in the Philippines are the result of competitive exclusion preventing secondary invasion of occupied islands. We first compare ecological niche models between two widespread, allopatric species and find statistical support for their ecological similarity, implying that competition for habitat between these species is possible. We then examine dispersion patterns among sympatric species and find some signal for overdispersion of body size, but not for phylogenetic branch length. Finally, we simulate the process of inter-island colonization under a stochastic model of dispersal lacking ecological forces. Results are dependent on the geographic scope and colonization probability employed. However, some combinations suggest that the number of inter-island dispersal events necessary to populate the archipelago may be much higher than the minimum number of colonization events necessary to explain current estimates of species richness and phylogenetic relationships. If our model is appropriate, these results imply that alternative factors, such as competitive exclusion, may have influenced the process of inter-island colonization and subsequent cladogenesis.We interpret the combined results as providing tenuous evidence that similarity in body size may prevent co-occurrence in Philippine shrews and that competitive exclusion among ecologically similar species, rather than an inability to disperse among islands, may have limited diversification in this group, and, possibly other clades endemic to island archipelagos

    Plant miRNAs: biogenesis, organization and origins

    No full text
    MicroRNAs, or miRNAs, are posttranscriptional regulators of gene expression. A wealth of observations and findings suggest highly complex, multicomponent, and intermingled pathways governing miRNA biogenesis and miRNA-mediated gene silencing. Plant miRNA genes are usually found as individual entities scattered around the intergenic and-to a much lesser extent-intragenic space, while miRNA gene clusters, formed by tandem or segmental duplications, also exist in plant genomes. Genome duplications are proposed to contribute to miRNA family expansions, as well. Evolutionarily young miRNAs retaining extensive homology to their loci of origin deliver important clues into miRNA origins and evolution. Additionally, imprecisely processed miRNAs evidence noncanonical routes of biogenesis, which may affect miRNA expression levels or targeting capabilities. Majority of the knowledge regarding miRNAs comes from model plant species. As ongoing research progressively expands into nonmodel systems, our understanding of miRNAs and miRNA-related pathways changes which opens up new perspectives and frontiers in miRNA research

    Return to the Malay Archipelago: the biogeography of Sundaic rainforest birds

    No full text
    corecore