22 research outputs found

    Electron density map using multiple scattering in grazing-incidence small-angle X-ray scattering

    No full text
    The electron density map of a block copolymer thin film having the hexagonally perforated layer (HPL) structure was directly obtained from the measured grazing-incidence small-angle X-ray scattering (GISAXS) pattern, exploiting the multiple-scattering phenomena present in GISAXS. It is shown that GISAXS is in principle equivalent to three-beam diffraction, which has been used to extract phases of diffraction peaks. In addition, X-ray reflectivity analysis has been performed which, when combined with the GISAXS results, provides full details of the HPL structure.open119sciescopu

    Self-Assembly of Diblock Copolymers/Au Nanoparticle Nanocomposites in Thin Films

    No full text

    Study of structural change in Wyodak coal in high-pressure CO2 by small angle neutron scattering

    No full text
    Small angle neutron scattering (SANS) has been applied to examine the effect of high-pressure CO2 on the structure of Wyodak coal. Significant decrease in the scattering intensities on the exposure of the coal to high-pressure CO2 showed that high-pressure CO2 rapidly gets adsorbed on the coal and reaches to all the pores in the structure. This is confirmed by strong and steep exothermic peaks observed on DSC scans during coal/CO2 interactions. In situ small angle neutron scattering on coal at high-pressure CO2 atmosphere showed an increase in scattering intensities with time suggesting that after adsorption, high-pressure CO2 immediately begins to diffuse into the coal matrix, changes the macromolecular structure of the coal, swells the matrix, and probably creates microporosity in coal structure by extraction of volatile components from coal. Significant decrease in the glass transition temperature of coal caused by high-pressure CO2 also confirms that CO2 at elevated pressures dissolve in the coal matrix, results in significant plasticization and physical rearrangement of the coal's macromolecular structure

    Azaarenes and Thiaarenes

    No full text
    corecore