143 research outputs found

    Functional Effects of Parasites on Food Web Properties during the Spring Diatom Bloom in Lake Pavin: A Linear Inverse Modeling Analysis

    Get PDF
    This study is the first assessment of the quantitative impact of parasitic chytrids on a planktonic food web. We used a carbon-based food web model of Lake Pavin (Massif Central, France) to investigate the effects of chytrids during the spring diatom bloom by developing models with and without chytrids. Linear inverse modelling procedures were employed to estimate undetermined flows in the lake. The Monte Carlo Markov chain linear inverse modelling procedure provided estimates of the ranges of model-derived fluxes. Model results support recent theories on the probable impact of parasites on food web function. In the lake, during spring, when ‘inedible’ algae (unexploited by planktonic herbivores) were the dominant primary producers, the epidemic growth of chytrids significantly reduced the sedimentation loss of algal carbon to the detritus pool through the production of grazer-exploitable zoospores. We also review some theories about the potential influence of parasites on ecological network properties and argue that parasitism contributes to longer carbon path lengths, higher levels of activity and specialization, and lower recycling. Considering the “structural asymmetry” hypothesis as a stabilizing pattern, chytrids should contribute to the stability of aquatic food webs

    Compartments revealed in food-web structure

    Full text link
    Compartments(1) in food webs are subgroups of taxa in which many strong interactions occur within the subgroups and few weak interactions occur between the subgroups(2). Theoretically, compartments increase the stability in networks(1-5), such as food webs. Compartments have been difficult to detect in empirical food webs because of incompatible approaches(6-9) or insufficient methodological rigour(8,10,11). Here we show that a method for detecting compartments from the social networking science(12-14) identified significant compartments in three of five complex, empirical food webs. Detection of compartments was influenced by food web resolution, such as interactions with weights. Because the method identifies compartmental boundaries in which interactions are concentrated, it is compatible with the definition of compartments. The method is rigorous because it maximizes an explicit function, identifies the number of non-overlapping compartments, assigns membership to compartments, and tests the statistical significance of the results(12-14). A graphical presentation(14) reveals systemic relationships and taxa-specific positions as structured by compartments. From this graphic, we explore two scenarios of disturbance to develop a hypothesis for testing how compartmentalized interactions increase stability in food webs(15-17).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62960/1/nature02115.pd

    "Open Innovation" and "Triple Helix" Models of Innovation: Can Synergy in Innovation Systems Be Measured?

    Get PDF
    The model of "Open Innovations" (OI) can be compared with the "Triple Helix of University-Industry-Government Relations" (TH) as attempts to find surplus value in bringing industrial innovation closer to public R&D. Whereas the firm is central in the model of OI, the TH adds multi-centeredness: in addition to firms, universities and (e.g., regional) governments can take leading roles in innovation eco-systems. In addition to the (transversal) technology transfer at each moment of time, one can focus on the dynamics in the feedback loops. Under specifiable conditions, feedback loops can be turned into feedforward ones that drive innovation eco-systems towards self-organization and the auto-catalytic generation of new options. The generation of options can be more important than historical realizations ("best practices") for the longer-term viability of knowledge-based innovation systems. A system without sufficient options, for example, is locked-in. The generation of redundancy -- the Triple Helix indicator -- can be used as a measure of unrealized but technologically feasible options given a historical configuration. Different coordination mechanisms (markets, policies, knowledge) provide different perspectives on the same information and thus generate redundancy. Increased redundancy not only stimulates innovation in an eco-system by reducing the prevailing uncertainty; it also enhances the synergy in and innovativeness of an innovation system.Comment: Journal of Open Innovations: Technology, Market and Complexity, 2(1) (2016) 1-12; doi:10.1186/s40852-016-0039-

    Evolving Clustered Random Networks

    Get PDF
    We propose a Markov chain simulation method to generate simple connected random graphs with a specified degree sequence and level of clustering. The networks generated by our algorithm are random in all other respects and can thus serve as generic models for studying the impacts of degree distributions and clustering on dynamical processes as well as null models for detecting other structural properties in empirical networks

    "Meaning" as a sociological concept: A review of the modeling, mapping, and simulation of the communication of knowledge and meaning

    Full text link
    The development of discursive knowledge presumes the communication of meaning as analytically different from the communication of information. Knowledge can then be considered as a meaning which makes a difference. Whereas the communication of information is studied in the information sciences and scientometrics, the communication of meaning has been central to Luhmann's attempts to make the theory of autopoiesis relevant for sociology. Analytical techniques such as semantic maps and the simulation of anticipatory systems enable us to operationalize the distinctions which Luhmann proposed as relevant to the elaboration of Husserl's "horizons of meaning" in empirical research: interactions among communications, the organization of meaning in instantiations, and the self-organization of interhuman communication in terms of symbolically generalized media such as truth, love, and power. Horizons of meaning, however, remain uncertain orders of expectations, and one should caution against reification from the meta-biological perspective of systems theory

    Connections between Classical and Parametric Network Entropies

    Get PDF
    This paper explores relationships between classical and parametric measures of graph (or network) complexity. Classical measures are based on vertex decompositions induced by equivalence relations. Parametric measures, on the other hand, are constructed by using information functions to assign probabilities to the vertices. The inequalities established in this paper relating classical and parametric measures lay a foundation for systematic classification of entropy-based measures of graph complexity

    “Structuration” by intellectual organization: the configuration of knowledge in relations among structural components in networks of science

    Get PDF
    Using aggregated journal–journal citation networks, the measurement of the knowledge base in empirical systems is factor-analyzed in two cases of interdisciplinary developments during the period 1995–2005: (i) the development of nanotechnology in the natural sciences and (ii) the development of communication studies as an interdiscipline between social psychology and political science. The results are compared with a case of stable development: the citation networks of core journals in chemistry. These citation networks are intellectually organized by networks of expectations in the knowledge base at the specialty (that is, above-journal) level. The “structuration” of structural components (over time) can be measured as configurational information. The latter is compared with the Shannon-type information generated in the interactions among structural components: the difference between these two measures provides us with a measure for the redundancy generated by the specification of a model in the knowledge base of the system. This knowledge base incurs (against the entropy law) to variable extents on the knowledge infrastructures provided by the observable networks of relations

    Biodiversity and the Functioning of Ecosystems in the Age of Global Change: Integrating Knowledge Across Scales

    Get PDF
    The dramatic decline of biodiversity worldwide has raised a general concern on the impacts this process could have for the well-being of humanity. Human societies strongly depend on the benefits provided by natural ecosystems, which are the result of biogeochemical processes governed by species activities and their interaction with abiotic compartments. After decades of experimental research on the biodiversity-functioning relationship, a relative agreement has been reached on the mechanisms underlying the impacts that biodiversity loss can have on ecosystem processes. However, a general consensus is still missing. We suggest that the reason preventing an integration of existing knowledge is the scale discrepancy between observations on global change impacts and biodiversity-functioning experiments. The present chapter provides an overview of global change impacts on biodiversity across various ecological scales and its consequences for ecosystem functioning, highlighting what is known and where knowledge gaps still persist. Furthermore, the reader will be introduced to a set of tools that allow a multi-scale analysis of how global change drivers impact ecosystem functioning
    corecore