1,207 research outputs found
Topical Collection: International Year of Groundwater—managing future societal and environmental challenges
Groundwater’s role in maintaining the well-being of the planet is increasingly acknowledged. Only recently has society recognised groundwater as a key component of the water cycle. To improve public understanding and the proper use of groundwater, the hydrogeological community must expand its efforts in groundwater assessment, management, and communication. The International Association of Hydrogeologists (IAH) intends to help achieve the United Nation’s water-related Sustainable Development Goals (SDGs) by the adoption of innovative hydrogeological strategies. This essay introduces a topical collection that encapsulates IAH’s 2022 ‘Year for Groundwater’
Topical Collection: International Year of Groundwater—managing future societal and environmental challenges
Groundwater’s role in maintaining the well-being of the planet is increasingly acknowledged. Only recently has society recognised groundwater as a key component of the water cycle. To improve public understanding and the proper use of groundwater, the hydrogeological community must expand its efforts in groundwater assessment, management, and communication. The International Association of Hydrogeologists (IAH) intends to help achieve the United Nation’s water-related Sustainable Development Goals (SDGs) by the adoption of innovative hydrogeological strategies. This essay introduces a topical collection that encapsulates IAH’s 2022 ‘Year for Groundwater’
Understanding animal fears: a comparison of the cognitive vulnerability and harm-looming models
Background: The Cognitive Vulnerability Model holds that both clinical and sub-clinical manifestations of animal fears are a result of how an animal is perceived, and can be used to explain both individual differences in fear acquisition and the uneven distribution of fears in the population. This study looked at the association between fear of a number of animals and perceptions of the animals as uncontrollable, unpredictable, dangerous and disgusting. Also assessed were the perceived loomingness, prior familiarity, and negative evaluation of the animals as well as possible conditioning experiences. Methods: 162 first-year University students rated their fear and perceptions of four high-fear and four low-fear animals. Results: Perceptions of the animals as dangerous, disgusting and uncontrollable were significantly associated with fear of both high- and low-fear animals while perceptions of unpredictability were significantly associated with fear of high-fear animals. Conditioning experiences were unrelated to fear of any animals. In multiple regression analyses, loomingness did not account for a significant amount of the variance in fear beyond that accounted for by the cognitive vulnerability variables. However, the vulnerability variables accounted for between 20% and 51% of the variance in all animals fears beyond that accounted for by perceptions of the animals as looming. Perceptions of dangerousness, uncontrollability and unpredictability were highly predictive of the uneven distribution of animal fears. Conclusion: This study provides support for the Cognitive Vulnerability Model of the etiology of specific fears and phobias and brings into question the utility of the harm-looming model in explaining animal fearJason M Armfiel
Assessing causal links between age at menarche and adolescent mental health: a Mendelian randomisation study
BACKGROUND: The timing of puberty may have an important impact on adolescent mental health. In particular, earlier age at menarche has been associated with elevated rates of depression in adolescents. Previous research suggests that this relationship may be causal, but replication and an investigation of whether this effect extends to other mental health domains is warranted. METHODS: In this Registered Report, we triangulated evidence from different causal inference methods using a new wave of data (N = 13,398) from the Norwegian Mother, Father, and Child Cohort Study. We combined multiple regression, one- and two-sample Mendelian randomisation (MR), and negative control analyses (using pre-pubertal symptoms as outcomes) to assess the causal links between age at menarche and different domains of adolescent mental health. RESULTS: Our results supported the hypothesis that earlier age at menarche is associated with elevated depressive symptoms in early adolescence based on multiple regression (β = − 0.11, 95% CI [− 0.12, − 0.09], pone-tailed < 0.01). One-sample MR analyses suggested that this relationship may be causal (β = − 0.07, 95% CI [− 0.13, 0.00], pone-tailed = 0.03), but the effect was small, corresponding to just a 0.06 standard deviation increase in depressive symptoms with each earlier year of menarche. There was also some evidence of a causal relationship with depression diagnoses during adolescence based on one-sample MR (OR = 0.74, 95% CI [0.54, 1.01], pone-tailed = 0.03), corresponding to a 29% increase in the odds of receiving a depression diagnosis with each earlier year of menarche. Negative control and two-sample MR sensitivity analyses were broadly consistent with this pattern of results. Multivariable MR analyses accounting for the genetic overlap between age at menarche and childhood body size provided some evidence of confounding. Meanwhile, we found little consistent evidence of effects on other domains of mental health after accounting for co-occurring depression and other confounding. CONCLUSIONS: We found evidence that age at menarche affected diagnoses of adolescent depression, but not other domains of mental health. Our findings suggest that earlier age at menarche is linked to problems in specific domains rather than adolescent mental health in general
Finding motif pairs in the interactions between heterogeneous proteins via bootstrapping and boosting
<p>Abstract</p> <p>Background</p> <p>Supervised learning and many stochastic methods for predicting protein-protein interactions require both negative and positive interactions in the training data set. Unlike positive interactions, negative interactions cannot be readily obtained from interaction data, so these must be generated. In protein-protein interactions and other molecular interactions as well, taking all non-positive interactions as negative interactions produces too many negative interactions for the positive interactions. Random selection from non-positive interactions is unsuitable, since the selected data may not reflect the original distribution of data.</p> <p>Results</p> <p>We developed a bootstrapping algorithm for generating a negative data set of arbitrary size from protein-protein interaction data. We also developed an efficient boosting algorithm for finding interacting motif pairs in human and virus proteins. The boosting algorithm showed the best performance (84.4% sensitivity and 75.9% specificity) with balanced positive and negative data sets. The boosting algorithm was also used to find potential motif pairs in complexes of human and virus proteins, for which structural data was not used to train the algorithm. Interacting motif pairs common to multiple folds of structural data for the complexes were proven to be statistically significant. The data set for interactions between human and virus proteins was extracted from BOND and is available at <url>http://virus.hpid.org/interactions.aspx</url>. The complexes of human and virus proteins were extracted from PDB and their identifiers are available at <url>http://virus.hpid.org/PDB_IDs.html</url>.</p> <p>Conclusion</p> <p>When the positive and negative training data sets are unbalanced, the result via the prediction model tends to be biased. Bootstrapping is effective for generating a negative data set, for which the size and distribution are easily controlled. Our boosting algorithm could efficiently predict interacting motif pairs from protein interaction and sequence data, which was trained with the balanced data sets generated via the bootstrapping method.</p
Assessing the causal role of epigenetic clocks in the development of multiple cancers: a Mendelian randomization study
Background: Epigenetic clocks have been associated with cancer risk in several observational studies. Nevertheless, it is unclear whether they play a causal role in cancer risk or if they act as a non-causal biomarker. Methods: We conducted a two-sample Mendelian randomization (MR) study to examine the genetically predicted effects of epigenetic age acceleration as measured by HannumAge (nine single-nucleotide polymorphisms (SNPs)), Horvath Intrinsic Age (24 SNPs), PhenoAge (11 SNPs), and GrimAge (4 SNPs) on multiple cancers (i.e. breast, prostate, colorectal, ovarian and lung cancer). We obtained genome-wide association data for biological ageing from a meta-analysis (N = 34,710), and for cancer from the UK Biobank (N cases = 2671-13,879; N controls = 173,493-372,016), FinnGen (N cases = 719-8401; N controls = 74,685-174,006) and several international cancer genetic consortia (N cases = 11,348-122,977; N controls = 15,861-105,974). Main analyses were performed using multiplicative random effects inverse variance weighted (IVW) MR. Individual study estimates were pooled using fixed effect meta-analysis. Sensitivity analyses included MR-Egger, weighted median, weighted mode and Causal Analysis using Summary Effect Estimates (CAUSE) methods, which are robust to some of the assumptions of the IVW approach. Results: Meta-analysed IVW MR findings suggested that higher GrimAge acceleration increased the risk of colorectal cancer (OR = 1.12 per year increase in GrimAge acceleration, 95% CI 1.04-1.20, p = 0.002). The direction of the genetically predicted effects was consistent across main and sensitivity MR analyses. Among subtypes, the genetically predicted effect of GrimAge acceleration was greater for colon cancer (IVW OR = 1.15, 95% CI 1.09-1.21, p = 0.006), than rectal cancer (IVW OR = 1.05, 95% CI 0.97-1.13, p = 0.24). Results were less consistent for associations between other epigenetic clocks and cancers. Conclusions: GrimAge acceleration may increase the risk of colorectal cancer. Findings for other clocks and cancers were inconsistent. Further work is required to investigate the potential mechanisms underlying the results. Funding: FMB was supported by a Wellcome Trust PhD studentship in Molecular, Genetic and Lifecourse Epidemiology (224982/Z/22/Z which is part of grant 218495/Z/19/Z). KKT was supported by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme) and by the Hellenic Republic's Operational Programme 'Competitiveness, Entrepreneurship & Innovation' (OΠΣ 5047228). PH was supported by Cancer Research UK (C18281/A29019). RMM was supported by the NIHR Biomedical Research Centre at University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol and by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme). RMM is a National Institute for Health Research Senior Investigator (NIHR202411). The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care. GDS and CLR were supported by the Medical Research Council (MC_UU_00011/1 and MC_UU_00011/5, respectively) and by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme). REM was supported by an Alzheimer's Society project grant (AS-PG-19b-010) and NIH grant (U01 AG-18-018, PI: Steve Horvath). RCR is a de Pass Vice Chancellor's Research Fellow at the University of Bristol
Recommended from our members
Complex picture for likelihood of ENSO-driven flood hazard
El Niño and La Niña events, the extremes of ENSO climate variability, influence river flow and flooding at the global scale. Estimates of the historical probability of extreme (high or low) precipitation are used to provide vital information on the likelihood of adverse impacts during extreme ENSO events. However, the nonlinearity between precipitation and flood magnitude motivates the need for estimation of historical probabilities using analysis of hydrological datasets. Here, this analysis is undertaken using the ERA-20CM-R river flow reconstruction for the 20th Century. Our results show that the likelihood of increased or decreased flood hazard during ENSO events is much more complex than is often perceived and reported; probabilities vary greatly across the globe, with large uncertainties inherent in the data and clear differences when comparing the hydrological analysis to precipitation
Manipulation of Signaling Thresholds in “Engineered Stem Cell Niches” Identifies Design Criteria for Pluripotent Stem Cell Screens
In vivo, stem cell fate is regulated by local microenvironmental parameters. Governing parameters in this stem cell niche include soluble factors, extra-cellular matrix, and cell-cell interactions. The complexity of this in vivo niche limits analyses into how individual niche parameters regulate stem cell fate. Herein we use mouse embryonic stem cells (mESC) and micro-contact printing (µCP) to investigate how niche size controls endogenous signaling thresholds. µCP is used to restrict colony diameter, separation, and degree of clustering. We show, for the first time, spatial control over the activation of the Janus kinase/signal transducer and activator of transcription pathway (Jak-Stat). The functional consequences of this niche-size-dependent signaling control are confirmed by demonstrating that direct and indirect transcriptional targets of Stat3, including members of the Jak-Stat pathway and pluripotency-associated genes, are regulated by colony size. Modeling results and empirical observations demonstrate that colonies less than 100 µm in diameter are too small to maximize endogenous Stat3 activation and that colonies separated by more than 400 µm can be considered independent from each other. These results define parameter boundaries for the use of ESCs in screening studies, demonstrate the importance of context in stem cell responsiveness to exogenous cues, and suggest that niche size is an important parameter in stem cell fate control
Human neutrophil clearance of bacterial pathogens triggers anti-microbial gamma delta T cell responses in early infection
Human blood Vc9/Vd2 T cells, monocytes and neutrophils share a responsiveness toward inflammatory chemokines and are rapidly recruited to sites of infection. Studying their interaction in vitro and relating these findings to in vivo observations in patients may therefore provide crucial insight into inflammatory events. Our present data demonstrate that Vc9/Vd2 T cells provide potent survival signals resulting in neutrophil activation and the release of the neutrophil chemoattractant CXCL8 (IL-8). In turn, Vc9/Vd2 T cells readily respond to neutrophils harboring phagocytosed bacteria, as evidenced by expression of CD69, interferon (IFN)-c and tumor necrosis factor (TNF)-a. This response is dependent on the ability of these bacteria to produce the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), requires cell-cell contact of Vc9/Vd2 T cells with accessory monocytes through lymphocyte function-associated antigen-1 (LFA-1), and results in a TNF-a dependent proliferation of Vc9/Vd2 T cells. The antibiotic fosmidomycin, which targets the HMB-PP biosynthesis pathway, not only has a direct antibacterial effect on most HMB-PP producing bacteria but also possesses rapid anti-inflammatory properties by inhibiting cd T cell responses in vitro. Patients with acute peritoneal-dialysis (PD)-associated bacterial peritonitis – characterized by an excessive influx of neutrophils and monocytes into the peritoneal cavity – show a selective activation of local Vc9/Vd2 T cells by HMB-PP producing but not by HMB-PP deficient bacterial pathogens. The cd T celldriven perpetuation of inflammatory responses during acute peritonitis is associated with elevated peritoneal levels of cd T cells and TNF-a and detrimental clinical outcomes in infections caused by HMB-PP positive microorganisms. Taken together, our findings indicate a direct link between invading pathogens, neutrophils, monocytes and microbe-responsive cd T cells in early infection and suggest novel diagnostic and therapeutic approaches.Martin S. Davey, Chan-Yu Lin, Gareth W. Roberts, Sinéad Heuston, Amanda C. Brown, James A. Chess, Mark A. Toleman, Cormac G.M. Gahan, Colin Hill, Tanya Parish, John D. Williams, Simon J. Davies, David W. Johnson, Nicholas Topley, Bernhard Moser and Matthias Eber
Phenotypic Variation and Bistable Switching in Bacteria
Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.
- …