28 research outputs found
A Self-Organizing Algorithm for Modeling Protein Loops
Protein loops, the flexible short segments connecting two stable secondary
structural units in proteins, play a critical role in protein structure and
function. Constructing chemically sensible conformations of protein loops that
seamlessly bridge the gap between the anchor points without introducing any
steric collisions remains an open challenge. A variety of algorithms have been
developed to tackle the loop closure problem, ranging from inverse kinematics to
knowledge-based approaches that utilize pre-existing fragments extracted from
known protein structures. However, many of these approaches focus on the
generation of conformations that mainly satisfy the fixed end point condition,
leaving the steric constraints to be resolved in subsequent post-processing
steps. In the present work, we describe a simple solution that simultaneously
satisfies not only the end point and steric conditions, but also chirality and
planarity constraints. Starting from random initial atomic coordinates, each
individual conformation is generated independently by using a simple alternating
scheme of pairwise distance adjustments of randomly chosen atoms, followed by
fast geometric matching of the conformationally rigid components of the
constituent amino acids. The method is conceptually simple, numerically stable
and computationally efficient. Very importantly, additional constraints, such as
those derived from NMR experiments, hydrogen bonds or salt bridges, can be
incorporated into the algorithm in a straightforward and inexpensive way, making
the method ideal for solving more complex multi-loop problems. The remarkable
performance and robustness of the algorithm are demonstrated on a set of protein
loops of length 4, 8, and 12 that have been used in previous studies
Metabolic constituents of grapevine and grape-derived products
The numerous uses of the grapevine fruit, especially for wine and beverages, have made it one of the most important plants worldwide. The phytochemistry of grapevine is rich in a wide range of compounds. Many of them are renowned for their numerous medicinal uses. The production of grapevine metabolites is highly conditioned by many factors like environment or pathogen attack. Some grapevine phytoalexins have gained a great deal of attention due to their antimicrobial activities, being also involved in the induction of resistance in grapevine against those pathogens. Meanwhile grapevine biotechnology is still evolving, thanks to the technological advance of modern science, and biotechnologists are making huge efforts to produce grapevine cultivars of desired characteristics. In this paper, important metabolites from grapevine and grape derived products like wine will be reviewed with their health promoting effects and their role against certain stress factors in grapevine physiology
Lawson criterion for ignition exceeded in an inertial fusion experiment
For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion