42 research outputs found

    Role of NAD(P)H Oxidase in Superoxide Generation and Endothelial Dysfunction in Goto-Kakizaki (GK) Rats as a Model of Nonobese NIDDM

    Get PDF
    Background: Cardiovascular disease is the leading cause of mortality in diabetics, and it has a complex etiology that operates on several levels. Endothelial dysfunction and increased generation of reactive oxygen species are believed to be an underlying cause of vascular dysfunction and coronary artery disease in diabetes. This impairment is likely the result of decreased bioavailability of nitric oxide (NO) within the vasculature. However, it is unclear whether hyperglycemia per se stimulates NADPH oxidase-derived superoxide generation in vascular tissue. Methods and Results: This study focused on whether NADPH oxidase-derived superoxide is elevated in vasculature tissue evoking endothelial/smooth muscle dysfunction in the hyperglycemic (16964 mg%) Goto-Kakizaki (GK) rat. By dihydroethidine fluorescence staining, we determined that aorta superoxide levels were significantly elevated in 9 month-old GK compared with age matched Wistar (GK; 19566%, Wistar; 10063.5%). Consistent with these findings, 10 26 mol/L acetylcholine-induced relaxation of the carotid artery was significantly reduced in GK rats compared with age matched Wistar (GK; 4167%, Wistar; 10065%) and measurements in the aorta showed a similar trend (p =.08). In contrast, relaxation to the NO donor SNAP was unaltered in GK compared to Wistar. Endothelial dysfunction was reversed by lowering of superoxide with apocynin, a specific Nox inhibitor. Conclusions: The major findings from this study are that chronic hyperglycemia induces significant vascular dysfunction i

    The NOX toolbox: validating the role of NADPH oxidases in physiology and disease

    Get PDF
    Reactive oxygen species (ROS) are cellular signals but also disease triggers; their relative excess (oxidative stress) or shortage (reductive stress) compared to reducing equivalents are potentially deleterious. This may explain why antioxidants fail to combat diseases that correlate with oxidative stress. Instead, targeting of disease-relevant enzymatic ROS sources that leaves physiological ROS signaling unaffected may be more beneficial. NADPH oxidases are the only known enzyme family with the sole function to produce ROS. Of the catalytic NADPH oxidase subunits (NOX), NOX4 is the most widely distributed isoform. We provide here a critical review of the currently available experimental tools to assess the role of NOX and especially NOX4, i.e. knock-out mice, siRNAs, antibodies, and pharmacological inhibitors. We then focus on the characterization of the small molecule NADPH oxidase inhibitor, VAS2870, in vitro and in vivo, its specificity, selectivity, and possible mechanism of action. Finally, we discuss the validation of NOX4 as a potential therapeutic target for indications including stroke, heart failure, and fibrosis

    Reactive oxygen species

    No full text
    Reactive oxygen species (ROS) are small unstable, highly reactive molecules with a short half-life derived by reduction of molecular oxygen. Once generated, ROS influence signalling molecules, in part through post-translational oxidative modification of proteins, modulating cellular function. These species are produced in all vascular cell types and have emerged as key second messengers in cellular events in the vasculature. ROS are involved in vascular contraction and relaxation, cell growth, migration, differentiation, survival and apoptosis. In pathological conditions, increased ROS generation is associated with oxidative stress and inflammation leading to dysregulation of vascular cell function and consequent vascular injury underlying cardiovascular diseases

    Single europium-doped nanoparticles measure temporal pattern of reactive oxygen species production inside cells

    No full text
    International audienceLow concentrations of reactive oxygen species, notably hydrogen peroxide (H 2 O 2), mediate various signalling processes in the cell. Production of these signals is highly regulated and a suitable probe is needed to measure these events. Here, we show that a probe based on a single nanoparticle can quantitatively measure transient H 2 O 2 generation in living cells. The Y 0.6 Eu 0.4 VO 4 nanoparticles undergo photoreduction under laser irradiation but re-oxidize in the presence of oxidants, leading to a recovery in luminescence. Our probe can be regenerated and reliably detects intracellular H 2 O 2 with a 30-s temporal resolution and a dynamic range of 1-45?M. The differences in the timing of intracellular H 2 O 2 production triggered by different signals were also measured using these nanoparticles. Although the probe is not selective towards H 2 O 2, in many signalling processes H 2 O 2 is, however, the dominant oxidant. In conjunction with appropriate controls, this probe is a powerful tool for unravelling pathways that involve reactive oxygen species. Cop. 2009 Macmillan Publishers Limited. All rights reserved
    corecore