45 research outputs found

    Prediction of specificity-determining residues for small-molecule kinase inhibitors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Designing small-molecule kinase inhibitors with desirable selectivity profiles is a major challenge in drug discovery. A high-throughput screen for inhibitors of a given kinase will typically yield many compounds that inhibit more than one kinase. A series of chemical modifications are usually required before a compound exhibits an acceptable selectivity profile. Rationalizing the selectivity profile for a small-molecule inhibitor in terms of the specificity-determining kinase residues for that molecule can be an important step toward the goal of developing selective kinase inhibitors.</p> <p>Results</p> <p>Here we describe S-Filter, a method that combines sequence and structural information to predict specificity-determining residues for a small molecule and its kinase selectivity profile. Analysis was performed on seven selective kinase inhibitors where a structural basis for selectivity is known. S-Filter correctly predicts specificity determinants that were described by independent groups. S-Filter also predicts a number of novel specificity determinants that can often be justified by further structural comparison.</p> <p>Conclusion</p> <p>S-Filter is a valuable tool for analyzing kinase selectivity profiles. The method identifies potential specificity determinants that are not readily apparent, and provokes further investigation at the structural level.</p

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Enhanced Operation Modes in IEEE 802.16 and Integration with Optical MANs

    No full text
    Wireless technology evolution permits users to be always connected to IP-based services through IP-based devices. Furthermore, thanks to wireless technology progresses, wirelessly connected users may now exploit a bandwidth comparable to the one provided by copper-based access technologies (e.g., xDSL). WiMAX (i.e., IEEE 802.16) is one of the wireless technologies with such potential. This paper addresses IEEE 802.16 aspects, from the enhanced modes of operations to the wireless/wired MAN integration. In particular, the paper focuses on advanced physical layer technologies for wireless transmission such as Multiple Input Multiple Output (MIMO) antennas and Adaptive Modulation and Coding (AMC), the optional IEEE 802.16 Mesh mode of operation, and the integration of wireless and wired/optical Metropolitan Area Networks (MANs). Current status and issues are presented and solutions are proposed
    corecore