161 research outputs found

    A peptide corresponding to the neuropilin-1-binding site on VEGF165 induces apoptosis of neuropilin-1-expressing breast tumour cells

    Get PDF
    There is increasing evidence that vascular endothelial growth factor (VEGF) has autocrine as well as paracrine functions in tumour biology. Vascular endothelial growth factor-mediated cell survival signalling occurs via the classical tyrosine kinase receptors Flt-1, KDR/Flk-1 and the more novel neuropilin (NP) receptors, NP-1 and NP-2. A 24-mer peptide, which binds to neuropilin-1, induced apoptosis of murine and human breast carcinoma cells, whereas a peptide directed against KDR had no effect. Both anti-NP1 and anti-KDR peptides induced endothelial cell apoptosis. Confocal microscopy using 5-(6)-carboxyfluorescein-labelled peptides showed that anti-NP1 bound to both tumour and endothelial cells, whereas anti-KDR bound endothelial cells only. This study demonstrates that NP-1 plays an essential role in autocrine antiapoptotic signalling by VEGF in tumour cells and that NP1-blockade induces tumour cell and endothelial cell apoptosis. Specific peptides can therefore be used to target both autocrine (tumour cells) and paracrine (endothelial cells) signalling by VEGF

    Neuropilin-1 antagonism in human carcinoma cells inhibits migration and enhances chemosensitivity

    Get PDF
    BACKGROUND: Neuropilin-1 (NRP1) is a non-tyrosine kinase receptor for vascular endothelial growth factor (VEGF) recently implicated in tumour functions.METHODS: In this study we used a specific antagonist of VEGF binding to the NRP1 b1 domain, EG3287, to investigate the functional roles of NRP1 in human carcinoma cell lines, non-small-cell lung A549, kidney ACHN, and prostate DU145 cells expressing NRP1, and the underlying mechanisms involved.RESULTS: EG3287 potently displaced the specific binding of VEGF to NRP1 in carcinoma cell lines and significantly inhibited the migration of A549 and ACHN cells. Neuropilin-1 downregulation by siRNA also decreased cell migration. EG3287 reduced the adhesion of A549 and ACHN cells to extracellular matrix (ECM), and enhanced the anti-adhesive effects of a beta 1-integrin function-blocking antibody. EG3287 increased the cytotoxic effects of the chemotherapeutic agents 5-FU, paclitaxel, or cisplatin on A549 and DU145 cells, through inhibition of integrin-dependent cell interaction with the ECM.CONCLUSIONS: These findings indicate that NRP1 is important for tumour cell migration and adhesion, and that NRP1 antagonism enhances chemosensitivity, at least in part, by interfering with integrin-dependent survival pathways. A major implication of this study is that therapeutic strategies targeting NRP1 in tumour cells may be particularly useful in combination with other drugs for combating tumour survival, growth, and metastatic spread independently of an antiangiogenic effect of blocking NRP1. British Journal of Cancer (2010) 102, 541-552. doi:10.1038/sj.bjc.6605539 www.bjcancer.com Published online 19 January 2010 (C) 2010 Cancer Research U

    Overexpression of neuropilin-1 promotes constitutive MAPK signalling and chemoresistance in pancreatic cancer cells

    Get PDF
    Neuropilin-1 (NRP-1) is a novel co-receptor for vascular endothelial growth factor (VEGF). Neuropilin-1 is expressed in pancreatic cancer, but not in nonmalignant pancreatic tissue. We hypothesised that NRP-1 expression by pancreatic cancer cells contributes to the malignant phenotype. To determine the role of NRP-1 in pancreatic cancer, NRP-1 was stably transfected into the human pancreatic cancer cell line FG. Signal transduction was assessed by Western blot analysis. Susceptibility to anoikis (detachment induced apoptosis) was evaluated by colony formation after growth in suspension. Chemosensitivity to gemcitabine or 5-fluorouracil (5-FU) was assessed by MTT assay in pancreatic cancer cells following NRP-1 overexpression or siRNA-induced downregulation of NRP-1. Differential expression of apoptosis-related genes was determined by gene array and further evaluated by Western blot analysis. Neuropilin-1 overexpression increased constitutive mitogen activated protein kinase (MAPK) signalling, possibly via an autocrine loop. Neuropilin-1 overexpression in FG cells enhanced anoikis resistance and increased survival of cells by >30% after exposure to clinically relevant levels of gemcitabine and 5-FU. In contrast, downregulation of NRP-1 expression in Panc-1 cells markedly increased chemosensitivity, inducing >50% more cell death at clinically relevant concentrations of gemcitabine. Neuropilin-1 overexpression also increased expression of the antiapoptotic regulator, MCL-1. Neuropilin-1 overexpression in pancreatic cancer cell lines is associated with (a) increased constitutive MAPK signalling, (b) inhibition of anoikis, and (c) chemoresistance. Targeting NRP-1 in pancreatic cancer cells may downregulate survival signalling pathways and increase sensitivity to chemotherapy

    Neuropilin-2 expression in breast cancer: correlation with lymph node metastasis, poor prognosis, and regulation of CXCR4 expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuropilin-2 (Nrp2) is a receptor for vascular endothelial growth factor-C (VEGF-C), which is a well-known lymphangiogenic factor and plays an important role in lymph node metastasis of various human cancers, including breast cancer. Recently, Nrp2 was shown to play a role in cancer by promoting tumor cell metastasis. CXC chemokine receptor 4 (CXCR4) also promotes tumor metastasis. In the previous studies, we demonstrated that VEGF-C and cytoplasmic CXCR4 expressions were correlated with poorer patient prognosis (BMC Cancer 2008,8:340; Breast Cancer Res Treat 2005, 91:125–132).</p> <p>Methods</p> <p>The relationship between Nrp2 expression and lymph node metastasis, VEGF-C expression, CXCR4 expression, and other established clinicopathological variables (these data were cited in our previous papers), including prognosis, was analyzed in human breast cancer. Effects of neutralizing anti-Nrp2 antibody on CXCR4 expression and chemotaxis were assessed in MDA-MB-231 breast cancer cells.</p> <p>Results</p> <p>Nrp2 expression was observed in 53.1% (60 of 113) of the invasive breast carcinomas. Nrp2 expression was significantly correlated with lymph node metastasis, VEGF-C expression, and cytoplasmic CXCR4 expression. Survival curves determined by the Kaplan-Meier method showed that Nrp2 expression was associated with reduced overall survival. In multivariate analysis, Nrp2 expression emerged as a significant independent predictor for overall survival. Neutralizing anti-Nrp2 antibody blocks cytoplasmic CXCR4 expression and CXCR4-induced migration in MDA-MB-231 cells.</p> <p>Conclusion</p> <p>Nrp2 expression was correlated with lymph node metastasis, VEGF-C expression, and cytoplasmic CXCR4 expression. Nrp2 expression may serve as a significant prognostic factor for long-term survival in breast cancer. Our data also showed a role for Nrp2 in regulating cytoplasmic CXCR4 expression <it>in vitro</it>.</p

    Migration-promoting role of VEGF-C and VEGF-C binding receptors in human breast cancer cells

    Get PDF
    Vascular endothelial growth factor C (VEGF-C) is a lymphangiogenic factor over-expressed in highly metastatic, cyclooxygenase (COX)-2 expressing breast cancer cells. We tested the hypothesis that tumour-derived VEGF-C may play an autocrine role in metastasis by promoting cellular motility through one or more VEGF-C-binding receptors VEGFR-2, VEGFR-3, neuropilin (NRP)-1, NRP-2, and integrin α9β1. We investigated the expression of these receptors in several breast cancer cell lines (MDA-MB-231, Hs578T, SK-BR-3, T-47D, and MCF7) and their possible requirement in migration of two VEGF-C-secreting, highly metastatic lines MDA-MB-231 and Hs578T. While cell lines varied significantly in their expression of above VEGF-C receptors, migratory activity of MDA-MB-231 and Hs578T cells was linked to one or more of these receptors. Depletion of endogenous VEGF-C by treatments with a neutralising antibody, VEGF-C siRNA or inhibitors of Src, EGFR/Her2/neu and p38 MAP kinases which inhibited VEGF-C production, inhibited cellular migration, indicating the requirement of VEGF-C for migratory function. Migration was differentially attenuated by blocking or downregulation of different VEGF-C receptors, for example treatment with a VEGFR-2 tyrosine kinase inhibitor, NRP-1 and NRP-2 siRNA or α9β1 integrin antibody, indicating the participation of one or more of the receptors in cell motility. This novel role of tumour-derived VEGF-C indicates that breast cancer metastasis can be promoted by coordinated stimulation of lymphangiogenesis and enhanced migratory activity of breast cancer cells

    Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metastasis is believed to progress in several steps including different pathways but the determination and understanding of these mechanisms is still fragmentary. Microarray analysis of gene expression patterns in breast tumors has been used to predict outcome in recent studies. Besides classification of outcome, these global expression patterns may reflect biological mechanisms involved in metastasis of breast cancer. Our purpose has been to investigate pathways and transcription factors involved in metastasis by use of gene expression data sets.</p> <p>Methods</p> <p>We have analyzed 8 publicly available gene expression data sets. A global approach, "gene set enrichment analysis" as well as an approach focusing on a subset of significantly differently regulated genes, GenMAPP, has been applied to rank pathway gene sets according to differential regulation in metastasizing tumors compared to non-metastasizing tumors. Meta-analysis has been used to determine overrepresentation of pathways and transcription factors targets, concordant deregulated in metastasizing breast tumors, in several data sets.</p> <p>Results</p> <p>The major findings are up-regulation of cell cycle pathways and a metabolic shift towards glucose metabolism reflected in several pathways in metastasizing tumors. Growth factor pathways seem to play dual roles; EGF and PDGF pathways are decreased, while VEGF and sex-hormone pathways are increased in tumors that metastasize. Furthermore, migration, proteasome, immune system, angiogenesis, DNA repair and several signal transduction pathways are associated to metastasis. Finally several transcription factors e.g. E2F, NFY, and YY1 are identified as being involved in metastasis.</p> <p>Conclusion</p> <p>By pathway meta-analysis many biological mechanisms beyond major characteristics such as proliferation are identified. Transcription factor analysis identifies a number of key factors that support central pathways. Several previously proposed treatment targets are identified and several new pathways that may constitute new targets are identified.</p

    AP-1 Is a Component of the Transcriptional Network Regulated by GSK-3 in Quiescent Cells

    Get PDF
    The protein kinase GSK-3 is constitutively active in quiescent cells in the absence of growth factor signaling. Previously, we identified a set of genes that required GSK-3 to maintain their repression during quiescence. Computational analysis of the upstream sequences of these genes predicted transcription factor binding sites for CREB, NFκB and AP-1. In our previous work, contributions of CREB and NFκB were examined. In the current study, the AP-1 component of the signaling network in quiescent cells was explored.Using chromatin immunoprecipitation analysis, two AP-1 family members, c-Jun and JunD, bound to predicted upstream regulatory sequences in 8 of the 12 GSK-3-regulated genes. c-Jun was phosphorylated on threonine 239 by GSK-3 in quiescent cells, consistent with previous studies demonstrating inhibition of c-Jun by GSK-3. Inhibition of GSK-3 attenuated this phosphorylation, resulting in the stabilization of c-Jun. The association of c-Jun with its target sequences was increased by growth factor stimulation as well as by direct GSK-3 inhibition. The physiological role for c-Jun was also confirmed by siRNA inhibition of gene induction.These results indicate that inhibition of c-Jun by GSK-3 contributes to the repression of growth factor-inducible genes in quiescent cells. Together, AP-1, CREB and NFκB form an integrated transcriptional network that is largely responsible for maintaining repression of target genes downstream of GSK-3 signaling

    Neuropilin-1 Modulates p53/Caspases Axis to Promote Endothelial Cell Survival

    Get PDF
    Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF), one of the crucial pro-angiogenic factors, functions as a potent inhibitor of endothelial cell (EC) apoptosis. Previous progress has been made towards delineating the VPF/VEGF survival signaling downstream of the activation of VEGFR-2. Here, we seek to define the function of NRP-1 in VPF/VEGF-induced survival signaling in EC and to elucidate the concomitant molecular signaling events that are pivotal for our understanding of the signaling of VPF/VEGF. Utilizing two different in vitro cell culture systems and an in vivo zebrafish model, we demonstrate that NRP-1 mediates VPF/VEGF-induced EC survival independent of VEGFR-2. Furthermore, we show here a novel mechanism for NRP-1-specific control of the anti-apoptotic pathway in EC through involvement of the NRP-1-interacting protein (NIP/GIPC) in the activation of PI-3K/Akt and subsequent inactivation of p53 pathways and FoxOs, as well as activation of p21. This study, by elucidating the mechanisms that govern VPF/VEGF-induced EC survival signaling via NRP-1, contributes to a better understanding of molecular mechanisms of cardiovascular development and disease and widens the possibilities for better therapeutic targets

    A Class III Semaphorin (Sema3e) Inhibits Mouse Osteoblast Migration and Decreases Osteoclast Formation In Vitro

    Get PDF
    Originally identified as axonal guidance cues, semaphorins are expressed throughout many different tissues and regulate numerous non-neuronal processes. We demonstrate that most class III semaphorins are expressed in mouse osteoblasts and are differentially regulated by cell growth and differentiation: Sema3d expression is increased and Sema3e expression decreased during proliferation in culture, while expression of Sema3a is unaffected by cell density but increases in cultures of mineralizing osteoblasts. Expression of Sema3a, -3e, and -3d is also differentially regulated by osteogenic stimuli; inhibition of GSK3β decreased expression of Sema3a and -3e, while 1,25-(OH)2D3 increased expression of Sema3e. Parathyroid hormone had no effect on expression of Sema3a, -3b, or -3d. Osteoblasts, macrophages, and osteoclasts express the Sema3e receptor PlexinD1, suggesting an autocrine and paracrine role for Sema3e. No effects of recombinant Sema3e on osteoblast proliferation, differentiation, or mineralization were observed; but Sema3e did inhibit the migration of osteoblasts in a wound-healing assay. The formation of multinucleated, tartrate-resistant acid phosphatase–positive osteoclasts was decreased by 81% in cultures of mouse bone marrow macrophages incubated with 200 ng/mL Sema3e. Correspondingly, decreased expression of osteoclast markers (Itgb3, Acp5, Cd51, Nfatc1, CalcR, and Ctsk) was observed by qPCR in macrophage cultures differentiated in the presence of Sema3e. Our results demonstrate that class III semaphorins are expressed by osteoblasts and differentially regulated by differentiation, mineralization, and osteogenic stimuli. Sema3e is a novel inhibitor of osteoclast formation in vitro and may play a role in maintaining local bone homeostasis, potentially acting as a coupling factor between osteoclasts and osteoblasts
    corecore