5 research outputs found

    Observation of second-harmonic generation induced by pure spin currents

    Get PDF
    Extensive efforts are currently being devoted to developing a new electronic technology, called spintronics, where the spin of electrons is explored to carry information. [1,2] Several techniques have been developed to generate pure spin currents in many materials and structures. [3-10] However, there is still no method available that can be used to directly detect pure spin currents, which carry no net charge current and no net magnetization. Currently, studies of pure spin currents rely on measuring the induced spin accumulation with optical techniques [5, 11-13] or spin-valve configurations. [14-17] However, the spin accumulation does not directly reflect the spatial distribution or temporal dynamics of the pure spin current, and therefore cannot monitor the pure spin current in a real-time and real-space fashion. This imposes severe constraints on research in this field. Here we demonstrate a second-order nonlinear optical effect of the pure spin current. We show that such a nonlinear optical effect, which has never been explored before, can be used for the non-invasive, non-destructive, and real-time imaging of pure spin currents. Since this detection scheme does not rely on optical resonances, it can be generally applied in a wide range of materials with different electronic bandstructures. Furthermore, the control of nonlinear optical properties of materials with pure spin currents may have potential applications in photonics integrated with spintronics.Comment: 19 pages, 3 figures, supplementary discussion adde

    Improvement of infrared single-photon detectors absorptance by integrated plasmonic structures

    Get PDF
    Plasmonic structures open novel avenues in photodetector development. Optimized illumination configurations are reported to improve p-polarized light absorptance in superconducting-nanowire single-photon detectors (SNSPDs) comprising short- and long-periodic niobium-nitride (NbN) stripe-patterns. In OC-SNSPDs consisting of ~quarter-wavelength dielectric layer closed by a gold reflector the highest absorptance is attainable at perpendicular incidence onto NbN patterns in P-orientation due to E-field concentration at the bottom of nano-cavities. In NCAI-SNSPDs integrated with nano-cavity-arrays consisting of vertical and horizontal gold segments off-axis illumination in S-orientation results in polar-angle-independent perfect absorptance via collective resonances in short-periodic design, while in long-periodic NCAI-SNSPDs grating-coupled surface waves promote EM-field transportation to the NbN stripes and result in local absorptance maxima. In NCDAI-SNSPDs integrated with nano-cavity-deflector-array consisting of longer vertical gold segments large absorptance maxima appear in 3p-periodic designs due to E-field enhancement via grating-coupled surface waves synchronized with the NbN stripes in S-orientation, which enable to compensate fill-factor-related retrogression.United States. Dept. of Energy (Frontier Research Centers

    Nanostructured Zn-Substituted Nickel Ferrite Thin Films: CMOS-Compatible Deposition and Excellent Soft Magnetic Properties

    No full text
    Nanostructured \textNi-x\textZn-1-xFe2O4 (x = 1, 0.5) films, about 1.5 μm thick on Si (100) substrates, were deposited using a low-Temperature (<150 C) microwave-Assisted solvothermal (MAS) technique that is compatible with back-end-of-The-line Si-CMOS processing. A nanocrystalline single-phase spinel structure with crystallite sizes of �4 nm for the nickel ferrite film (NF) and �6 nm for the zinc-substituted NF (ZNF) was obtained. The films demonstrate excellent surface smoothness and strong adherence to the substrate. Deconvolution of the A-1g vibration mode in Raman spectra of both films reveals a ''far-from-equilibrium'' crystallographic inversion induced by the MAS process. Its effect on the magnetic characteristics of the films is analyzed here. Both films exhibit in-plane (xy plane) isotropy with very low room-Temperature coercivities, 25 Oe for NF and 35 Oe for ZNF, which is essential for high-frequency, soft magnetic applications. The presence of interparticular dipolar interaction in both films is confirmed from temperature-dependent magnetization measurements made under different dc bias fields. The CMOS-compatible ferrite processing and superparamagnetic Ni-ferrite and NiZn-ferrite thin films presented here can meet upcoming technological needs in on-chip integrated passive devices
    corecore