4 research outputs found

    Phosphorylation of chemoattractant receptors is not essential for chemotaxis or termination of G-protein-mediated responses

    Get PDF
    In several G-protein-coupled signaling systems, ligand-induced receptor phosphorylation by specific kinases is suggested to lead to desensitization via mechanisms including receptor/G-protein uncoupling, receptor internalization, and receptor down-regulation. We report here that elimination of phosphorylation of a chemoattractant receptor of Dictyostelium, either by site-directed substitution of the serines or by truncation of the C-terminal cytoplasmic domain, completely prevented agonist-induced loss of ligand binding but did not impair the adaptation of several receptor-mediated responses including the activation of adenylyl and guanylyl cyclases and actin polymerization, In addition, the phosphorylation deficient receptors were capable of mediating chemotaxis, aggregation, and differentiation. We propose that for chemoattractant receptors agonist-induced phosphorylation regulates surface binding activity but other phosphorylation-independent mechanisms mediate response adaptation

    Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes

    No full text
    corecore