13 research outputs found

    Superconducting properties of the attractive Hubbard model

    Full text link
    A self-consistent set of equations for the one-electron self-energy in the ladder approximation is derived for the attractive Hubbard model in the superconducting state. The equations provide an extension of a T-matrix formalism recently used to study the effect of electron correlations on normal-state properties. An approximation to the set of equations is solved numerically in the intermediate coupling regime, and the one-particle spectral functions are found to have four peaks. This feature is traced back to a peak in the self-energy, which is related to the formation of real-space bound states. For comparison we extend the moment approach to the superconducting state and discuss the crossover from the weak (BCS) to the intermediate coupling regime from the perspective of single-particle spectral densities.Comment: RevTeX format, 8 figures. Accepted for publication in Z.Phys.

    IR divergences and kinetic equation in de Sitter space. (Poincare patch; Principal series)

    Full text link
    We explicitly show that the one loop IR correction to the two--point function in de Sitter space scalar QFT does not reduce just to the mass renormalization. The proper interpretation of the loop corrections is via particle creation revealing itself through the generation of the quantum averages ,, and ,whichslowlychangeintime.WeshowthatthisobservationinparticularmeansthatloopcorrectionstocorrelationfunctionsindeSitterspacecannotbeobtainedviaanalyticalcontinuationofthosecalculatedonthesphere.Wefindharmonicsforwhichtheparticlenumber, which slowly change in time. We show that this observation in particular means that loop corrections to correlation functions in de Sitter space can not be obtained via analytical continuation of those calculated on the sphere. We find harmonics for which the particle number dominates over the anomalous expectation values and and . For these harmonics the Dyson--Schwinger equation reduces in the IR limit to the kinetic equation. We solve the latter equation, which allows us to sum up all loop leading IR contributions to the Whiteman function. We perform the calculation for the principle series real scalar fields both in expanding and contracting Poincare patches.Comment: 33 pages, 6 fig; Language was correcte
    corecore