31 research outputs found
Deciding Together?:Best Interests and Shared Decision-Making in Paediatric Intensive Care
In the western healthcare, shared decision making has become the orthodox approach to making healthcare choices as a way of promoting patient autonomy. Despite the fact that the autonomy paradigm is poorly suited to paediatric decision making, such an approach is enshrined in English common law. When reaching moral decisions, for instance when it is unclear whether treatment or non-treatment will serve a child’s best interests, shared decision making is particularly questionable because agreement does not ensure moral validity. With reference to current common law and focusing on intensive care practice, this paper investigates what claims shared decision making may have to legitimacy in a paediatric intensive care setting. Drawing on key texts, I suggest these identify advantages to parents and clinicians but not to the child who is the subject of the decision. Without evidence that shared decision making increases the quality of the decision that is being made, it appears that a focus on the shared nature of a decision does not cohere with the principle that the best interests of the child should remain paramount. In the face of significant pressures toward the displacement of the child’s interests in a shared decision, advantages of a shared decision to decisional quality require elucidation. Although a number of arguments of this nature may have potential, should no such advantages be demonstrable we have cause to revise our commitment to either shared decision making or the paramountcy of the child in these circumstances
Clinical, diagnostic and biochemical features of generalised glycogenosis type II in Brahman cattle
Alpha-mannosidosis in the guinea pig: A new animal model for lysosomal storage disorders
Alpha-mannosidosis is a lysosomal storage disorder resulting from deficient activity of lysosomal alpha-mannosidase. It has been described previously in humans, cattle, and cats, and is characterized in all of these species principally by neuronal storage leading to progressive mental deterioration. Two guinea pigs with stunted growth, progressive mental dullness, behavioral abnormalities, and abnormal posture and gait, showed a deficiency of acidic alpha-mannosidase activity in leukocytes, plasma, fibroblasts, and whole liver extracts. Fractionation of liver demonstrated a deficiency of lysosomal (acidic) alpha-mannosidase activity. Thin layer chromatography of urine and tissue extracts confirmed the diagnosis by demonstrating a pattern of excreted and stored oligosaccharides almost identical to that of urine from a human alpha-mannosidosis patient. Widespread neuronal vacuolation was observed throughout the CNS, including the cerebral cortex, hippocampus, thalamus, cerebellum, midbrain, pons, medulla, and the dorsal and ventral horns of the spinal cord. Lysosomal vacuolation also occurred in many other visceral tissues and was particularly severe in pancreas, thyroid, epididymis, and peripheral ganglion. Axonal spheroids were observed in some brain regions, but gliosis and demyelination were not observed. Ultrastructurally, most vacuoles in both the CNS and visceral tissues were lucent or contained fine fibrillar or flocculent material. Rare large neurons in the cerebral cortex contained fine membranous structures. Skeletal abnormalities were very mild. Alpha-mannosidosis in the guinea pig closely resembles the human disease and will provide a convenient model for investigation of new therapeutic strategies for neuronal storage diseases, such as enzyme replacement and gene replacement therapies.Allison C Crawley, Margaret Z Jones, Lynda E Bonning, John W Finnie and John J Hopwoo
