20 research outputs found

    Molecular enzymology of carnitine transfer and transport

    No full text
    Carnitine (L-3-hydroxy-4-N-trimethylaminobutyric acid) forms esters with a wide range of acyl groups and functions to transport and excrete these groups. It is found in most cells at millimolar levels after uptake via the sodium-dependent carrier, OCTN2. The acylation state of the mobile carnitine pool is linked to that of the limited and compartmentalised coenzyme A pools by the action of the family of carnitine acyltransferases and the mitochondrial membrane transporter, CACT. The genes and sequences of the carriers and the acyltransferases are reviewed along with mutations that affect activity. After summarising the accepted enzymatic background, recent molecular studies on the carnitine acyltransferases are described to provide a picture of the role and function of these freely reversible enzymes. The kinetic and chemical mechanisms are also discussed in relation to the different inhibitors under study for their potential to control diseases of lipid metabolism. (C) 2001 Elsevier Science B.V. All rights reserved.</p

    Structure and mechanism of the diterpene cyclase ent-copalyl diphosphate synthase

    No full text
    The structure of ent-copalyl diphosphate synthase (CPS) reveals three α-helical domains (α, β, γ), as also observed in the related diterpene cyclase taxadiene synthase. However, active sites are located at the interface of the βγ domains in CPS but exclusively in the α domain of taxadiene synthase. Modular domain architecture in plant diterpene cyclases enables the evolution of alternative active sites and chemical strategies for catalyzing isoprenoid cyclization reactions
    corecore