22 research outputs found

    Nanostructured Systems Containing Rutin: In Vitro Antioxidant Activity and Photostability Studies

    Get PDF
    The improvement of the rutin photostability and its prolonged in vitro antioxidant activity were studied by means of its association with nanostructured aqueous dispersions. Rutin-loaded nanocapsules and rutin-loaded nanoemulsion showed mean particle size of 124.30 ± 2.06 and 124.17 ± 1.79, respectively, polydispersity index below 0.20, negative zeta potential, and encapsulation efficiency close to 100%. The in vitro antioxidant activity was evaluated by the formation of free radical ·OH after the exposure of hydrogen peroxide to a UV irradiation system. Rutin-loaded nanostructures showed lower rutin decay rates [(6.1 ± 0.6) 10−3 and (5.1 ± 0.4) 10−3 for nanocapsules and nanoemulsion, respectively] compared to the ethanolic solution [(35.0 ± 3.7) 10−3 min−1] and exposed solution [(40.1 ± 1.7) 10−3 min−1] as well as compared to exposed nanostructured dispersions [(19.5 ± 0.5) 10−3 and (26.6 ± 2.6) 10−3, for nanocapsules and nanoemulsion, respectively]. The presence of the polymeric layer in nanocapsules was fundamental to obtain a prolonged antioxidant activity, even if the mathematical modeling of the in vitro release profiles showed high adsorption of rutin to the particle/droplet surface for both formulations. Rutin-loaded nanostructures represent alternatives to the development of innovative nanomedicines

    Lipid-Core Nanocapsules as a Nanomedicine for Parenteral Administration of Tretinoin: Development and In Vitro Antitumor Activity on Human Myeloid Leukaemia Cells

    No full text
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Tretinoin-loaded conventional nanocapsules have showed a significant protection of this drug against UVC radiation. However, this formulation presents a limited stability on storage. We hypothesized that the association of tretinoin to lipid-core nanocapsules could increase the physicochemical stability of such formulations, focusing on the development of a reliable nanomedicine for parenteral administration. However, this advantage should still be accompanied by the known photoprotective effect of conventional polymeric nanocapsules against the exposure of tretinoin to UV radiation. Results showed that tretinoin-loaded lipid-core nanocapsules improved the physicochemical stability of formulations under storage, without changing their ability to protect tretinoin either against UVA or UVC radiation. In addition, the effect of nanoencapsulation on the antiproliferative and differentiation properties of tretinoin was studied on human myeloid leukemia cells (HL60 cells) showing that tretinoin-loaded lipid-core nanocapsules presents a longer antitumor efficiency compared to the free tretinoin. These results allow us to propose the current formulation (tretinoin-loaded lipid-core nanocapsules) as a promising parenteral nanomedicine for the treatment of acute promyelocytic leukaemia.63214223Fundacao de Amparo a Pesquisa do Estado do Rio Grande do Sul (FAPERGS)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)INCT-IFConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES
    corecore