10 research outputs found

    An intuitive Python interface for Bioconductor libraries demonstrates the utility of language translators

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Computer languages can be domain-related, and in the case of multidisciplinary projects, knowledge of several languages will be needed in order to quickly implements ideas. Moreover, each computer language has relative strong points, making some languages better suited than others for a given task to be implemented. The Bioconductor project, based on the R language, has become a reference for the numerical processing and statistical analysis of data coming from high-throughput biological assays, providing a rich selection of methods and algorithms to the research community. At the same time, Python has matured as a rich and reliable language for the agile development of prototypes or final implementations, as well as for handling large data sets.</p> <p>Results</p> <p>The data structures and functions from Bioconductor can be exposed to Python as a regular library. This allows a fully transparent and native use of Bioconductor from Python, without one having to know the R language and with only a small community of <it>translators</it> required to know both. To demonstrate this, we have implemented such Python representations for key infrastructure packages in Bioconductor, letting a Python programmer handle annotation data, microarray data, and next-generation sequencing data.</p> <p>Conclusions</p> <p>Bioconductor is now not solely reserved to R users. Building a Python application using Bioconductor functionality can be done just like if Bioconductor was a Python package. Moreover, similar principles can be applied to other languages and libraries. Our Python package is available at: <url>http://pypi.python.org/pypi/rpy2-bioconductor-extensions/</url></p

    The p53HMM algorithm: using profile hidden markov models to detect p53-responsive genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A computational method (called p53HMM) is presented that utilizes Profile Hidden Markov Models (PHMMs) to estimate the relative binding affinities of putative p53 response elements (REs), both p53 single-sites and cluster-sites. These models incorporate a novel "Corresponded Baum-Welch" training algorithm that provides increased predictive power by exploiting the redundancy of information found in the repeated, palindromic p53-binding motif. The predictive accuracy of these new models are compared against other predictive models, including position specific score matrices (PSSMs, or weight matrices). We also present a new dynamic acceptance threshold, dependent upon a putative binding site's distance from the Transcription Start Site (TSS) and its estimated binding affinity. This new criteria for classifying putative p53-binding sites increases predictive accuracy by reducing the false positive rate.</p> <p>Results</p> <p>Training a Profile Hidden Markov Model with corresponding positions matching a combined-palindromic p53-binding motif creates the best p53-RE predictive model. The p53HMM algorithm is available on-line: <url>http://tools.csb.ias.edu</url></p> <p>Conclusion</p> <p>Using Profile Hidden Markov Models with training methods that exploit the redundant information of the homotetramer p53 binding site provides better predictive models than weight matrices (PSSMs). These methods may also boost performance when applied to other transcription factor binding sites.</p

    iPhy: an integrated phylogenetic workbench for supermatrix analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The increasing availability of molecular sequence data means that the accuracy of future phylogenetic studies is likely to by limited by systematic bias and taxon choice rather than by data. In order to take advantage of increasing datasets, user-friendly tools are required to facilitate phylogenetic analyses and to reduce duplication of dataset assembly efforts. Current phylogenetic pipelines are dependency-heavy and have significant technical barriers to use.</p> <p>Results</p> <p>Here we present iPhy, a web application that lets non-technical users assemble, share and analyse DNA sequence datasets for multigene phylogenetic investigations. Built on a simple client-server architecture, iPhy eases the collection of gene sets for analysis, facilitates alignment and reliably generates phylogenetic analysis-ready data files. Phylogenetic trees generated in external programs can be imported and stored, and iPhy integrates with iTol to allow trees to be displayed with rich data annotation. The datasets collated in iPhy can be shared through the client interface. We show how systematic biases can be addressed by using explicit criteria when selecting sequences for analysis from a large dataset. A representative instance of iPhy can be accessed at iphy.bio.ed.ac.uk, but the toolkit can also be deployed on a local server for advanced users.</p> <p>Conclusions</p> <p>iPhy provides an easy-to-use environment for the assembly, analysis and sharing of large phylogenetic datasets, while encouraging best practices in terms of phylogenetic analysis and taxon selection.</p

    Identification of gene co-regulatory modules and associated cis-elements involved in degenerative heart disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiomyopathies, degenerative diseases of cardiac muscle, are among the leading causes of death in the developed world. Microarray studies of cardiomyopathies have identified up to several hundred genes that significantly alter their expression patterns as the disease progresses. However, the regulatory mechanisms driving these changes, in particular the networks of transcription factors involved, remain poorly understood. Our goals are (A) to identify modules of co-regulated genes that undergo similar changes in expression in various types of cardiomyopathies, and (B) to reveal the specific pattern of transcription factor binding sites, <it>cis</it>-elements, in the proximal promoter region of genes comprising such modules.</p> <p>Methods</p> <p>We analyzed 149 microarray samples from human hypertrophic and dilated cardiomyopathies of various etiologies. Hierarchical clustering and Gene Ontology annotations were applied to identify modules enriched in genes with highly correlated expression and a similar physiological function. To discover motifs that may underly changes in expression, we used the promoter regions for genes in three of the most interesting modules as input to motif discovery algorithms. The resulting motifs were used to construct a probabilistic model predictive of changes in expression across different cardiomyopathies.</p> <p>Results</p> <p>We found that three modules with the highest degree of functional enrichment contain genes involved in myocardial contraction (n = 9), energy generation (n = 20), or protein translation (n = 20). Using motif discovery tools revealed that genes in the contractile module were found to contain a TATA-box followed by a CACC-box, and are depleted in other GC-rich motifs; whereas genes in the translation module contain a pyrimidine-rich initiator, Elk-1, SP-1, and a novel motif with a GCGC core. Using a naïve Bayes classifier revealed that patterns of motifs are statistically predictive of expression patterns, with odds ratios of 2.7 (contractile), 1.9 (energy generation), and 5.5 (protein translation).</p> <p>Conclusion</p> <p>We identified patterns comprised of putative <it>cis</it>-regulatory motifs enriched in the upstream promoter sequence of genes that undergo similar changes in expression secondary to cardiomyopathies of various etiologies. Our analysis is a first step towards understanding transcription factor networks that are active in regulating gene expression during degenerative heart disease.</p

    Predicting DNA-Binding Specificities of Eukaryotic Transcription Factors

    Get PDF
    Today, annotated amino acid sequences of more and more transcription factors (TFs) are readily available. Quantitative information about their DNA-binding specificities, however, are hard to obtain. Position frequency matrices (PFMs), the most widely used models to represent binding specificities, are experimentally characterized only for a small fraction of all TFs. Even for some of the most intensively studied eukaryotic organisms (i.e., human, rat and mouse), roughly one-sixth of all proteins with annotated DNA-binding domain have been characterized experimentally. Here, we present a new method based on support vector regression for predicting quantitative DNA-binding specificities of TFs in different eukaryotic species. This approach estimates a quantitative measure for the PFM similarity of two proteins, based on various features derived from their protein sequences. The method is trained and tested on a dataset containing 1 239 TFs with known DNA-binding specificity, and used to predict specific DNA target motifs for 645 TFs with high accuracy
    corecore