40 research outputs found

    Analysis of pmpD Expression and PmpD Post-Translational Processing during the Life Cycle of Chlamydia trachomatis Serovars A, D, and L2

    Get PDF
    BACKGROUND: The polymorphic membrane protein D (PmpD) in Chlamydia is structurally similar to autotransporter proteins described in other bacteria and may be involved in cellular and humoral protective immunity against Chlamydia. The mechanism of PmpD post-translational processing and the role of its protein products in the pathogenesis of chlamydial infection have not been very well elucidated to date. METHODOLOGY/PRINCIPAL FINDINGS: Here we examined the expression and post-translational processing of the protein product of the pmpD gene during the life cycle of C. trachomatis serovars A, D, and L2. Each of these three serovars targets different human organs and tissues and encodes a different pmpD gene nucleotide sequence. Our quantitative real-time reverse transcription polymerase chain reaction results demonstrate that the pmpD gene is up-regulated at 12-24 hours after infection regardless of the Chlamydia serovar. This up-regulation is coincidental with the period of exponential growth and replication of reticulate bodies (RB) of Chlamydia and indicates a probable similarity in function of pmpD in serovars A, D, and L2 of Chlamydia. Using mass spectrometry analysis, we identified the protein products of post-translational processing of PmpD of C. trachomatis serovar L2 and propose a double pathway model for PmpD processing, with one cleavage site between the passenger and autotransporter domains and the other site in the middle of the passenger domain. Notably, when Chlamydia infected culture cells were subjected to low (28 degrees C) temperature, PmpD post-translational processing and secretion was found to be uninhibited in the resulting persistent infection. In addition, confocal microscopy of cells infected with Chlamydia confirms our earlier hypothesis that PmpD is secreted outside Chlamydia and its secretion increases with growth of the chlamydial inclusion. CONCLUSION/SIGNIFICANCE: The results of this current study involving multiple Chlamydia serovars support the general consensus that the pmpD gene is maximally expressed at mid infection and provide new information about PmpD as an autotransporter protein which is post-translationally processed and secreted outside Chlamydia during normal and low temperature induced persistent chlamydial infection

    Structural analyses on intermediates in serine protease catalysis.

    No full text
    Although the subject of many studies, detailed structural information on aspects of the catalytic cycle of serine proteases is lacking. Crystallographic analyses were performed in which an acyl-enzyme complex, formed from elastase and a peptide, was reacted with a series of nucleophilic dipeptides. Multiple analyses led to electron density maps consistent with the formation of a tetrahedral species. In certain cases, apparent peptide bond formation at the active site was observed, and the electron density maps suggested production of a cis-amide rather than a trans-amide. Evidence for a cis-amide configuration was also observed in the noncovalent complex between elastase and an alpha1-antitrypsin-derived tetrapeptide. Although there are caveats on the relevance of the crystallographic data to solution catalysis, the results enable detailed proposals for the pathway of the acylation step to be made. At least in some cases, it is proposed that the alcohol of Ser-195 may preferentially attack the carbonyl of the cis-amide form of the substrate, in a stereoelectronically favored manner, to give a tetrahedral oxyanion intermediate, which undergoes N-inversion and/or C-N bond rotation to enable protonation of the leaving group nitrogen. The mechanistic proposals may have consequences for protease inhibition, in particular for the design of high energy intermediate analogues

    Purification, crystallization and preliminary X-ray diffraction of anthocyanidin synthase from Arabidopsis thaliana.

    No full text
    Anthocyanidin synthase (ANS) from Arabidopsis thaliana is a non-haem iron(II)-dependent dioxygenase reported to catalyse the conversion of leucoanthocyanidins to anthocyanidins. Anthocyanidins are precursors of anthocyanins, which are a major family of pigments in higher plants. ANS was crystallized by the vapour-diffusion method using polyethylene glycol as a precipitant. The crystals belong to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 61.0, b = 73.2, c = 87.0 A, and diffract to 2.4 A using Cu Kalpha radiation

    Kinetic and crystallographic analysis of complexes formed between elastase and peptides from beta-casein

    No full text
    Human beta-casomorphin-7 (NH2-Tyr-Pro-Phe-Val-Glu-Pro-Ile-CO2H) is a naturally occurring peptide inhibitor of elastase that has been shown to form an acyl-enzyme complex stable enough for X-ray crystallographic analysis at pH 5. To investigate the importance of the N-terminal residues of the beta-casomorphin-7 peptide for the inhibition of elastase, kinetic and crystallographic analyses were undertaken to identify the minimum number of residues required for effective formation of a stable complex between truncated beta-casomorphin-7 peptides and porcine pancreatic elastase (PPE). The results clearly demonstrate that significant inhibition of PPE can be effected by simple tri-, tetra-and pentapeptides terminating in a carboxylic acid. These results also suggest that in vivo regulation of protease activity could be mediated via short peptides as well as by proteins. Crystallographic analysis of the complex formed between N-acetyl-Val-Glu-Pro-Ile-CO2H and PPE at pH 5 (to 1.67 A resolution) revealed an active site water molecule in an analogous position to that observed in the PPE/beta-casomorphin-7 structure supportive of its assignment as the 'hydrolytic water' in the deacylation step of serine protease catalysis

    Mechanistic insights into the inhibition of serine proteases by monocyclic lactams

    No full text
    Although originally discovered as inhibitors of pencillin-binding proteins, beta-lactams have more recently found utility as serine protease inhibitors. Indeed through their ability to react irreversibly with nucleophilic serine residues they have proved extraordinarily successful as enzyme inhibitors. Consequently there has been much speculation as to the reason for the general effectiveness of beta-lactams as antibacterials or inhibitors of hydrolytic enzymes. The interaction of analogous beta- and gamma-lactams with a serine protease was investigated. Three series of gamma-lactams based upon monocyclic beta-lactam inhibitors of elastase [Firestone, R. A. et al. (1990) Tetrahedron 46, 2255-2262.] but with an extra methylene group inserted between three of the bonds in the ring were synthesized. Their interaction with porcine pancreatic elastase and their efficacy as inhibitors were evaluated through the use of kinetic, NMR, mass spectrometric, and X-ray crystallographic analyses. The first series, with the methylene group inserted between C-3 and C-4 of the p-lactam template, were readily hydrolyzed but were inactive or very weakly active as inhibitors. The second series, with the methylene group between C-4 and the nitrogen of the beta-lactam template, were inhibitory and reacted reversibly with PPE to form acyl-enzyme complexes, which were stable with respect to hydrolysis. The third series, with the methylene group inserted between C-2 and C-3, were not hydrolyzed and were not inhibitors consistent with lack of binding to PPE. Comparison of the crystal structure of the acyl-enzyme complex formed between PPE and a second series gamma-lactam and that formed between PPE and a peptide [Wilmouth, R. C., et al. (1997) Nat. Struct. Biol. 4, 456-462.] reveals why the complexes formed with this series were resistant to hydrolysis and suggests ways in which stable acyl-enzyme complexes might be obtained from monocyclic gamma-lactam-based inhibitors.</p

    Reaction of clavams with elastase reveals a general method for inhibiting 'serine' enzymes

    No full text
    Ester derivatives of clavulanic acid acylate Ser-195 of the serine protease porcine pancreatic elastase to form stable malonyl semi-aldehyde derivatives, analogous to those formed in the inhibition of β-lactamases by clavulanic acid itself. Formation of such derivatives maybe a general way of inhibiting 'serine' enzymes. (C) 2000 Elsevier Science Ltd

    X-ray structure of a serine protease acyl-enzyme complex at 0.95-A resolution.

    No full text
    Kinetic analyses led to the discovery that N-acetylated tripeptides with polar residues at P3 are inhibitors of porcine pancreatic elastase (PPE) that form unusually stable acyl-enzyme complexes. Peptides terminating in a C-terminal carboxylate were more potent than those terminating in a C-terminal amide, suggesting recognition by the oxy-anion hole is important in binding. X-ray diffraction data were recorded to 0.95-A resolution for an acyl-enzyme complex formed between PPE and N-acetyl-Asn-Pro-Ile-CO2H at approximately pH 5. The accuracy of the crystallographic coordinates allows structural issues concerning the mechanism of serine proteases to be addressed. Significantly, the ester bond of the acyl-enzyme showed a high level of planarity, suggesting geometric strain of the ester link is not important during catalysis. Several hydrogen atoms could be clearly identified and were included within the model. In keeping with a recent x-ray structure of subtilisin at 0.78 A (1), limited electron density is visible consistent with the putative location of a hydrogen atom approximately equidistant between the histidine and aspartate residues of the catalytic triad. Comparison of this high resolution crystal structure of the acyl-enzyme complex with that of native elastase at 1.1 A (2) showed that binding of the N-terminal part of the substrate can be accommodated with negligible structural rearrangements. In contrast, comparison with structures obtained as part of "time-resolved" studies on the reacting acyl-enzyme complex at &gt;pH 7 (3) indicate small but significant structural differences, consistent with the proposed synchronization of ester hydrolysis and substrate release
    corecore